
Phlex
Release 0.3 (For Review)

Jul 30, 2025

CONTENTS

1 Introduction 3
1.1 Requirements Process and Framework Selection . 3
1.2 Framework Philosophy . 4
1.3 Programming Languages . 6
1.4 Framework Independence . 6
1.5 Guide to Reading This Document . 6

2 High-Level Abstractions 9
2.1 Function Notation . 9
2.2 Types . 10
2.3 Sequences and Families . 11
2.4 Functional Programming . 12
2.5 Families of Data and Higher-Order Functions . 13
2.6 Data Flow . 14

3 Conceptual Design 17
3.1 Topology of the Data-Flow Graph . 18
3.2 Data Organization . 20
3.3 Algorithms . 22
3.4 Framework Registration . 23
3.5 Supported Higher-Order Functions . 28
3.6 Framework Driver . 39
3.7 Data-Product Providers . 40
3.8 Data-Product Writers . 40
3.9 Resources . 40
3.10 Program Configuration . 42

A Definitions 43

B Framework Requirements 45
B.1 Conceptual Requirements . 45
B.2 Supporting Requirements . 62

Bibliography 83

Index 85

i

ii

Phlex, Release 0.3 (For Review)

Preface
Phlex is a data-processing framework that supports the Parallel, hierarchical, and layered execution of data-processing
algorithms.

This document gives a brief introduction to what Phlex aims to achieve, the conceptual design elements in support of
those aims.

CONTENTS 1

Phlex, Release 0.3 (For Review)

2 CONTENTS

CHAPTER

ONE

INTRODUCTION

A resonable definition of a software framework is [Wiki-Framework]:

an abstraction in which software, providing generic functionality, can be selectively changed by additional
user-written code, thus providing application-specific software.

The framework orchestrates data flow, resource management, and parallel execution. It enables a scientific collaboration
to write standardized workflows where physicists can insert their own algorithms. In a HEP context, this insertion
often occurs by the framework dynamically loading libraries called plugins. Although not required, a framework
often provides a program’s main(. . .) function, which (directly or indirectly) invokes user code within the plugins as
configured at appropriate points in the program’s execution.

The following diagram illustrates three high-level computing stages commonly used in HEP to obtain physics results
from detector signals.

DAQ Physics
results

Reconstruction and
simulation framework

AnalysisDetector
signals

Frameworks are typically used in a high-level trigger environment, for reconstructing physics objects from detector
signals, or for simulating physics processes. Many analysis needs can also be met by a data-processing framework.
However, the HEP community tends to perform final-stage analysis using standalone applications. Phlex, therefore,
aims to satisfy the data-processing needs of only physics reconstruction and simulation.

1.1 Requirements Process and Framework Selection
Phlex provides facilities and behaviors that support the physics goals of its stakeholders, notably the DUNE experiment1.
In a concerted effort in 2023 and 2024, DUNE established a set of high-level requirements or stakeholder requirements,
which constrain the design of a framework in support of DUNE’s needs. A dedicated tool [Jama-Connect] was subse-
quently selected to manage such stakeholder requirements, tracking them in a version-controlled manner, and creating
logical dependencies among them. Additionally, system requirements were created to guide implementation in support
of the stakeholder requirements.

After formulating its stakeholder requirements, DUNE evaluated whether existing HEP frameworks could also satisfy
DUNE’s needs. The frameworks considered included the Gaudi framework [Gaudi] (used by ATLAS and LHCb),
CMSSW ’s framework [CMSSW], ALICE’s O2 framework [O2], as well as the art framework [art], which is used by
many of the intensity-frontier experiments at Fermi National Accelerator Laboratory. Over time, each framework has
undergone substantial adjustments to take advantage of hardware and software developments (multi-threading, multi-
processing, GPU usage, etc.), resulting in more efficient data-processing, and (in some cases) making possible some
data-processing that may have been infeasible without adjustment.

1 It is possible for additional experiments to become stakeholders of the Phlex framework. In such a case, the stakeholder requirements of one
experiment may not negate those of another (particularly DUNE).

3

Phlex, Release 0.3 (For Review)

Each framework considered above, however, is designed according to event-centric, collider-physics concepts. The
DUNE stakeholder requirements demand that any event-centric assumptions must be relaxed to permit more flexible
data organizations (see Section 1.2.1). Specifically, the data groupings of interest must not be rigidly defined by the
framework itself, but specifiable by the user [DUNE 22]. Even art, the framework used by the ProtoDUNE experiments,
forces users to adopt awkward workarounds to process the relatively slow-evolving detector signatures of neutrino
interactions (as compared to the very fast beam interactions of collider experiments).

To be sure, an existing HEP framework can be modified to eventually meet the needs of DUNE. However, such mod-
ification does not exist in a vacuum, and in DUNE’s determination, adjusting an existing HEP framework to satisfy
DUNE’s stakeholder requirements was impractical. Significant changes would be required for any of the frameworks,
and it is unclear the manner and extent to which such changes would be accepted by already operational experiments us-
ing the framework in question. DUNE thus decided to develop a new framework designed to directly support DUNE’s
framework requirements. Establishing a new framework also provides an opportunity to shed legacy coding patterns
that have been problematic in achieving efficient data-processing.

1.1.1 Requirements Ownership
Each Phlex stakeholder owns its stakeholder requirements, which support the high-level needs of the experiment. Sys-
tem requirements, which are subservient to stakeholder requirements, are owned by the Phlex developers, who are free
to adjust the implementation to satisfy all stakeholder requirements.

1.1.2 Requirements in This Document
The stakeholder requirements are listed in Appendix B for convenience. To more easily connect the design to the
requirements, any design aspect influenced by specific requirements contains bracketed references to those requirements
(e.g. [DUNE 22]).

Where possible, we limit references to stakeholder requirements to the conceptual design in Chapter 3. Some stake-
holder requirements are referenced in the technical design (under preparation) if those requirements do not affect the
conceptual framework model. No system requirements are currently referenced in this document.

1.2 Framework Philosophy
A framework is a tool that aids the scientific process of inferring accurate physics results from observed data. Main-
taining data integrity is therefore paramount, as is retaining an accounting of how physics results were obtained from
that data. The Phlex design therefore:

• treats all data presented to (or created by) Phlex as immutable for the remainder of a Phlex program’s execution,

• requires recording the provenance of every created data product [DUNE 121], and

• enables, and—to the extent possible—ensures the reproducible creation of data products.

1.2.1 Flexibility
Physics results in HEP are obtained by processing large collections of data and making statistical statements from them.
Each element of a collection generally contains the data corresponding to one readout of the detector. Such elements are
often termed “events”, which are treated as statistically independent observations of physics processes. It is common for
experiments to define larger aggregations of data by grouping events into subruns (or, for LHC experiments, luminosity
blocks), and by further grouping subruns into runs. These larger aggregations are typically defined according to when
certain detector calibrations or accelerator beam parameters were applied.

Although frameworks supporting the Run-Subrun-Event (RSE) hierarchy have proved effective and flexible enough for
collider-based experiments, the RSE hierarchy is not always appropriate:

• simulated data often do not need to be processed with an RSE hierarchy; a flat hierarchy (e.g. only the “event”)
is usually sufficient,

4 Chapter 1. Introduction

Phlex, Release 0.3 (For Review)

• framework interface is often explicitly couched in RSE terminology, making it difficult to apply to non-collider
contexts, where a different data-grouping may be more appropriate (e.g. time slices for extended readout win-
dows, each of which correspond to one “event”),

• calibration data is often described independently from an RSE hierarchy, requiring other means of accounting
for systematic corrections that must be applied to the data.

Phlex does not prescribe an RSE hierarchy—it only requires that the hierarchy be representable as a directed acyclic
graph (DAG) at run-time, with each grouping of data represented as a node in the graph, and the relationships be-
tween data-groupings represented as edges. This expression of the hierarchy greatly relaxes the constraints placed on
experiments while still supporting the collider-based RSE hierarchy (see Section 3.2.2).

The hierarchy graph and its nodes (i.e. the data-groupings) are definable at run-time, thus allowing the specification of
data organizations that are appropriate for the workflow [DUNE 22].

The flexibility in defining data-groupings and how they relate to each other necessitates further flexibility:

1. user-defined algorithms are not bound to statically-typed classes representing data-groupings—e.g. there is no
direct dependency on a C++ “event” class, and

2. a framework program must be “driven” by a user-provided entity that expresses the hierarchy graph desired by
the user, not a hierarchy that is prescribed by the framework.

These concepts are discussed more fully in Chapter 3.

1.2.2 Portability
Phlex is intended to be used on a variety of computing systems to take advantage of the disparate computing resources
available to each stakeholder [DUNE 8]. This means the framework:

• must support data-processing by algorithms that execute on GPUs [DUNE 11], in addition to those that execute
on CPUs,

• may not generally rely on hardware characteristics unique to a particular platform [DUNE 63],

• must favor standardized programming-language features.

1.2.3 Usability
Although usability is not a formal stakeholder requirement, physicists expect various behaviors and features that ease
one’s interaction with a data-processing framework. Phlex strives to meet this expectation in various ways:

minimizing boilerplate code
Some data-processing frameworks in HEP adopt an object-oriented design, where stateful
framework-dependent objects are required to register inherently framework-agnostic algorithms with
a framework program. Phlex does not generally require physics algorithms to depend on any frame-
work libraries [DUNE 43]. This design, therefore, substantially reduces the amount of code required
for the interface between physics algorithms and the framework itself (see Section 1.4).

failing early
To avoid needless computation, Phlex will fail as early as possible in the presence of an error. This
means that, for C++ usage, compile-time failures will be favored over run-time exceptions.

meaningful error messages
When failures within the scope of the framework occur2, the reported error messages will be as
descriptive as possible. Messages will typically include diagnostic information about the data being
processed when the error occurred as well as the algorithms that were executed on that data.

2 Any errors that occur within an algorithm must be handled by the algorithm itself, unless the intention of the algorithm author is to allow the
error to propagate up to the code that invokes the algorithm.

1.2. Framework Philosophy 5

Phlex, Release 0.3 (For Review)

graceful shutdown
For run-time errors, the default behavior of Phlex is to end the framework program gracefully [DUNE
134]. A graceful shutdown refers to a framework program that completes the processing of all in-
flight data, safely closes all open input and output files, cleans up connections to external entities
(such as databases), etc. before the program ends. This ensures that no resources are left in ill-
defined states and that all output files are readable and valid.

1.2.4 Reusability
The decision to create a new framework is appropriately met with skepticism. However, the selection of which frame-
work design to pursue was strongly guided by past R&D efforts specifically targeted to explore DUNE’s framework
needs [Meld]. In addition, many ideas already represented in existing production-quality frameworks are also integrated
into Phlex’s technical design (under preparation):

• Existing parallel-processing libraries will be used (e.g. Intel’s oneTBB),

• ROOT IO mechanisms will be in place for persisting data,

• The HEP-CCE experience on portability technologies will inform how CPU/GPU source-code portability is
achieved.

The chance to develop a new framework also necessitates a re-examination of the knowledge acquired by the broader
computing community, and how that knowledge can be applied to data-processing in HEP. Consequently, part of the
Phlex design is simply a summary of prior research that has a ready application to DUNE’s data-processing needs (e.g.
see Chapter 2).

1.3 Programming Languages
The framework will support user algorithms written in multiple programming languages [DUNE 14]. Specifically,
an algorithm may be written in either C++3 [DUNE 81] or Python4 [DUNE 82]. If there is a need to support user
algorithms written in another programming language, a corresponding stakeholder requirement should be created.

Note that the language is left unspecified for the implementation of the framework itself.

1.4 Framework Independence
We define an algorithm as framework-independent if it contains no explicit dependencies on framework libraries—i.e.
it is possible to build and execute the algorithm independent of a framework context. For framework-independent C++
algorithms, this means there are no direct or transitive framework libraries that are either included as headers in the
algorithm code or linked as run-time libraries. Similarly, framework-independent Python algorithms import no direct
or transitive framework packages.

Phlex is required to support the registration of user-defined, framework-independent algorithms [DUNE 43]. This does
not mean that all framework-independent algorithms are suitable for registration, nor does it mean that all algorithms
registered with the framework must be framework-independent. In fact, depending on what the algorithm is doing,
some algorithms might require explicit framework dependencies.

1.5 Guide to Reading This Document
This document is intended to convey Phlex’s conceptual design without delving into implementation specifics. We
therefore adopt a set of high-level abstractions that model the data-processing the framework will perform. These
ideas are discussed in Chapter 2, which summarizes well-known mathematical concepts already used in the computing
industry. From there, we discuss the conceptual design itself in Chapter 3.

3 As of this writing, Phlex supports the C++23 standard.
4 Phlex adheres to SPEC 0 [SPEC-0] in supporting Python versions and core package dependencies.

6 Chapter 1. Introduction

Phlex, Release 0.3 (For Review)

Appendices are provided that give definitions (Appendix A) and list stakeholder requirements (Appendix B).

. Attention

Any C++ or Python framework interface presented in this document is illustrative and not intended to reflect the
final framework interface.

1.5. Guide to Reading This Document 7

Phlex, Release 0.3 (For Review)

8 Chapter 1. Introduction

CHAPTER

TWO

HIGH-LEVEL ABSTRACTIONS

With Phlex, the general notion of data-processing must be expressed without relying on the concept of an event [DUNE
22]. We therefore avoid the “event” terminology altogether. Instead, we adopt a set of well-known abstractions that
can be systematically applied to each of the processing behaviors required of Phlex. These ideas work together, and
they are presented here as ingredients necessary for understanding the conceptual design given in Chapter 3.

This chapter is somewhat formal in mathematics. However, the formality used provides crisp descriptions of the data-
processing concepts required of Phlex, enabling a computing model that is (a) naturally thread-safe, and (b) allows a
close connection between user-defined algorithms and the physics such algorithms are intended to represent.

As will be discussed in Section 2.4, Phlex adopts a functional programming paradigm for the construction of workflows.
To adequately describe what functional programming is, we first introduce function notation, the concept of the type,
and mathematical sequences and indexed families. With these ingredients, we are then able to discuss functional
programming and how it is supported by data-flow graphs.

2.1 Function Notation
The expression 𝑓 : 𝐴 → 𝐵 represents the function 𝑓 that takes an element of the set 𝐴 to an element of the set 𝐵. For
example, the function 𝑓𝑙𝑖𝑝 : R → R accepts a real number (e.g. 3.14) and multiplies it by −1, returning another real
number (e.g. −3.14).

The types 𝐴 and 𝐵 are allowed to represent Cartesian products of sets (e.g. 𝐴 = 𝐴1 × · · · × 𝐴𝑛), thus enabling
multivariate functions. For example, the following are simple multivariate functions:

𝑝𝑜𝑤𝑒𝑟 : R× N → R
ℎ𝑎𝑙𝑣𝑒 : N → N× N

whereN is the set of natural numbers. Invoking 𝑝𝑜𝑤𝑒𝑟(1.5, 2) results in the real number 1.52 = 2.25, whereas invoking
ℎ𝑎𝑙𝑣𝑒(5) divides 5 by 2, returning the pair (2, 1), where the first number is the quotient, and the second is the remainder.

It is conventional to use parentheses to denote the application of the function 𝑓 to an argument 𝑥 —i.e. 𝑓(𝑥). To
avoid cluttered expressions in this document, however, we adopt an alternative whereby the parentheses are omitted
and whitespace is used to delimit the function and its argument(s):

𝑓(𝑥) =⇒ 𝑓 𝑥

ℎ(𝑔(𝑦)) =⇒ ℎ (𝑔 𝑦) = ℎ 𝑔 𝑦

In mathematical expressions, parentheses are then reserved in this document to specify:

1. A tuple of arguments that serve as input to a single function invocation (e.g. 𝑝𝑜𝑤𝑒𝑟 (1.5, 2) above)5.

2. The binding of user-defined algorithms to higher-order functions (see Section 2.5).
5 The expression 𝑓 𝑥 can equivalently be written 𝑓 (𝑥), where (𝑥) is a single-element tuple. With this interpretation, the conventional function-

invocation notation can be recovered.

9

Phlex, Release 0.3 (For Review)

2.2 Types
A reasonable description of a type is that it is a mathematical set of objects. For example, the type int is an approx-
imation to the mathematical set Z, although there may be technological limitations on what values an object of type
int can take.

Suppose, however, that an algorithm 𝑝(𝑛POT) is configured to operate on an integer 𝑛POT that corresponds to the number
of protons on target. In such a case, specifying the function 𝑝 as 𝑝 : Z → 𝑅 (where 𝑅 is an arbitrary return type) is
too permissive. In a framework context, not all data of type int (the equivalent to Z) are suitable for processing by the
algorithm 𝑝.

In this document, the type therefore refers to a mathematical set that includes more than just the programming language’s
type T; it can also include various labels that identify which kind of T is desired.

2.2.1 Boolean Set
The Boolean values true (T) and false (F) are used frequently in computing. It is convenient to denote a set that contains
both values:

B = {T,F}

Although true and false are often represented by 1 and 0, respectively, we use the symbols T and F to avoid implicit
comparisons between the members of the set B and (e.g.) Z. With this convention, B ∩ Z = ∅.

2.2.2 Representing void and NoneType
In HEP, it is common to encounter C++ functions like:

void f(int);
double g();

where the function either returns nothing (i.e. void) or it accepts no argument. Python supports similar behavior for
its functions and methods, but using the keyword None instead of void.

The mathematical set that is used to represent C++’s void and Python’s NoneType is the set 1, which contains only
one element6. The above functions are thus represented in function notation as:

𝑓 : Z → 1 , and
𝑔 : 1 → R .

This notation will be used as we discuss the operators required by Phlex’s higher-order functions.

The single element of the set 1 can also be used to represent the value nullptr for C++ pointers (see Section 2.2.3).
When necessary we will refer to that single element as the null value, or simply the open-closed parentheses ().

2.2.3 Representing Optional Types
It is occasionally necessary to represent a “nullable” or “optional” type Opt(𝑇), whose objects either contain a value
type 𝑇 or are null. Mathematically, this is represented by the coproduct 𝑇 ⊔ 1, where a null or disengaged object of
type Opt(𝑇) has a value equal to the single element of the set 1.

Table 2.1 gives examples of programming types in various languages that can be mathematically represented by Opt(𝑇).
Although Phlex does not support algorithms written in Haskell, an example of the use of Maybe T is given as an
illustration of how Opt(𝑇) is supported outside of C++ and Python.

6 It is tempting to associate void and NoneType with the empty set ∅. However, a function must always be invoked with at least one object, and
it must return at least one object. The empty set contains no such objects that can be presented to (or returned from) a function.

10 Chapter 2. High-Level Abstractions

Phlex, Release 0.3 (For Review)

Table 2.1: Optional types in Haskell, Python, and C++. Due to Python’s dynamic nature, a given name (e.g. k) can be
bound to any value, thus emulating an optional type.

Language Type 𝑇 Type Opt(𝑇) Engaged value Disengaged value
Haskell Int m :: Maybe Int m = Just 42 m = Nothing
Python int See caption k = 42 k = None
C++ int std::optional<int> i; i = 42; i = std::nullopt;

int const* j; j = new int{42}; j = nullptr;

2.3 Sequences and Families
A finite sequence can be represented as an ordered list of objects, all of which are from the same set or type (see Section
2.2). For example, the sequence 𝑎 = [𝑎1, 𝑎2, . . . , 𝑎𝑛] is written as

𝑎 = [𝑎1, 𝑎2, . . . , 𝑎𝑛] = [𝑎𝑖]𝑖∈{1,2,...,𝑛} = [𝑎𝑖]𝑖∈ℐ

where each 𝑎𝑖 ∈ 𝐴, and ℐ = {1, 2, . . . , 𝑛} is the index set whose elements are used to identify objects within the
sequence 𝑎.

The elements 𝑎𝑖 can be ordered only if the index set itself is ordered7—e.g because the elements of the set N respect
the order 1 < 2 < 3 < · · · , the elements of 𝑎 are listed in that order, and 𝑎 is, therefore, a sequence. However, if the
index set has no ordering associated with it, then instead of 𝑎 representing a sequence, it represents an indexed family,
where the ordering of elements is not meaningful. Specifically, an indexed family 𝑏 can be equivalently represented as:

𝑏 = [𝑏1, 𝑏2, . . . , 𝑏𝑛] = [𝑏𝑛, . . . , 𝑏2, 𝑏1] = [𝑏𝑖]𝑖∈ℐ

or any of the 𝑛! orderings possible. The index set ℐ simply provides a mapping from an index to the data object itself.

s Important

The order in which elements are presented to algorithms is not guaranteed in concurrent contexts. Phlex, therefore,
processes indexed families of data and not sequences.

In some cases, it is convenient to represent a family’s index as a tuple of numbers, thus representing layers of nesting
in the data organization (see Section 3.2). As an illustration, to use the RSE hierarchy from Section 1.2.1 one could
specify

𝑐 = [𝑐𝑖]𝑖∈ℐRSE
= [𝑐𝑟𝑠𝑒](𝑟,𝑠,𝑒)∈ℐRSE

to refer to a family of data products c, where the variables 𝑟, 𝑠, and 𝑒 correspond to the identifiers for specific Runs,
Subruns, and Events. The values that 𝑟, 𝑠, and 𝑒 are permitted to take are determined by the members of the index set
ℐRSE, which contains triplets of numbers. The semantics of the indices depend on the use case, and it is usually best to
denote the semantics along with the indices (e.g.):

𝑐 = [𝑐𝑟𝑠𝑒](Run 𝑟, Subrun 𝑠, Event 𝑒)∈ℐRSE

This avoids confusion when other data organizations are considered. For presentation purposes, however, we only
include explicit semantics whenever it is necessary for describing the data-processing in question (e.g. Section 3.5.5).

The length of the family 𝑏 above is denoted by |𝑏|, and it equals the cardinality of the index set: |𝑏| = |ℐ|. In this
document, we also use the empty family, which has length 0, and whose elements can be indexed by the empty set:

[] = [𝑏𝑖]𝑖∈∅ .

We also use the notation 𝑏̃ to denote a family whose elements are either Boolean true (T) or false (F), such as 𝑏̃ =
[T,T,F, . . .].

7 Specifically, the index set must be equipped with a strict total order.

2.3. Sequences and Families 11

Phlex, Release 0.3 (For Review)

2.4 Functional Programming
Functional programming is a paradigm that favors the use of functions instead of the direct manipulation of stateful
objects. The processing of data happens by using chained operations, where the output of one function serves as the
input to other functions.

For example, given two functions:

𝑓 : Wires → Hits
𝑔 : Hits → Tracks

a composite function ℎ : Wires → Tracks can be constructed such that:

𝑡𝑠 = ℎ 𝑤𝑠 = 𝑔 (𝑓 𝑤𝑠) = (𝑔 ∘ 𝑓) 𝑤𝑠

or ℎ = 𝑔 ∘ 𝑓 , where 𝑤𝑠 ∈ Wires and 𝑡𝑠 ∈ Tracks.

In reality, the creation of tracks from wire signals is much more complicated8. However, as seen above, functional
programming permits a mathematical description of the data-processing to be performed. Expressing the processing
needs according to mathematics enables:

• the use of mathematical rules to optimize the processing of the data,

• naturally reproducible results, assuming the functions are pure (see Section 2.4.1),

• parallel invocations of pure functions with no possibility of data races [DUNE 130].

2.4.1 Pure Functions
According to Wikipedia [Wiki-Pure], a pure function has the following properties:

• the function return values are identical for identical arguments, and

• the function has no side effects.

Phlex therefore encourages the use of pure functions for creating of reproducible data products, a principle of the
framework philosophy as discussed in Section 1.2.

ò Favor free functions

Functions can additionally be classified as free functions or member functions (or methods). Whereas a free function
has only explicit input parameters, a member function called on an object has access to the internal state of the
object as well as the explicit function parameters. Both kinds of functions can be useful, but authors of classes
must exercise special care to ensure that a class instance’s member functions can be safely invoked in concurrent
contexts. For this reason, framework users should favor free functions over classes and their member functions.

2.4.2 Challenges with Functional Programming
One drawback to functional programming is that it differs from what many in the HEP community are accustomed
to when writing their own physics algorithms. Commonly used third-party libraries and computing languages can
also make functional programming difficult to use in practice. We argue, though, that physicists often think in terms of
functional programming when developing the high-level processing steps of a workflow. It is not until those processing
steps need to be implemented that the functional steps are often translated into procedural ones.

Phlex aims to restore the functional programming approach as the natural way of expressing the data-processing to
be performed. By leveraging commonly used processing patterns (see Section 2.5 on higher-order functions), we
can mitigate any awkwardness due to initial unfamiliarity with functional programming paradigms. The framework

8 As discussed in Section 2.6, the general topology of a data-processing workflow is a graph of functions.

12 Chapter 2. High-Level Abstractions

Phlex, Release 0.3 (For Review)

also does not place constraints on the algorithm implementations—algorithm authors are free to employ imperative
programming techniques within the implementations if doing so is convenient. The framework will simply schedule
the algorithm as if it were a pure function without regard to its implementation.

2.5 Families of Data and Higher-Order Functions
Particle physics results are obtained by performing statistical analysis on families of data. Such analysis typically
involves repeated invocations of the same kind of operation. For example, a relatively simple result is calculating the
arithmetic mean of 𝑛 numbers:

𝑐 =
1

𝑛

∑︁
𝑖∈ℐ

𝑐𝑖

where the sum is over the numbers [𝑐𝑖]𝑖∈ℐ , and 𝑛 is the cardinality of the index set ℐ.

The sum is an example of a data reduction or fold, where a family is collapsed into one result. In particular, the
arithmetic mean above can be expressed as:

𝑐 =
1

𝑛
fold(+, 0) [𝑐𝑖]𝑖∈ℐ

where the fold accepts a binary operator (+ in this case) that is repeatedly applied to an accumulated value (initialized
to 0) and each element of the family.

The fold is an example of a higher-order function (HOF) [Wiki-HOF] that accepts a family and an operator applied
in some way to elements of that family. However, additional HOFs exist—for example, suppose the family [𝑐𝑖] was
created by applying a function 𝑤 : 𝐸 → 𝐶 to each element of a family [𝑒𝑖]. Such a HOF is called a map or transform:

[𝑐𝑖] = [𝑤 𝑒𝑖] = transform(𝑤) [𝑒𝑖]

In such a scenario, the average 𝑐 could be expressed as:

𝑐 =
1

𝑛
fold(+, 0) transform(𝑤) [𝑒𝑖] =

1

𝑛
fold(+ ∘ 𝑤, 0) [𝑒𝑖]

The second equality holds by the fold-map fusion law [Bird], which states that the application of a transform followed
by a fold can be reduced to a single fold. The operator to this single fold is ‘+ ∘ 𝑤’, indicating that the function 𝑤
should be applied first before invoking the + operation. Relying on such mathematical laws permits the replacement
of chained calculations with a single calculation, often leading to efficiency improvements without affecting the result.

Table 2.2: Higher-order functions supported by Phlex. Each family is represented by a single variable (e.g. 𝑎). Details
of each HOF and its operators are in Section 3.5.

Higher-order function Operator(s) Output family length
Transform 𝑏 = transform(𝑓) 𝑎 𝑓 : 𝐴 → 𝐵 |𝑏| = |𝑎|
Predicate 𝑏̃ = predicate(𝑓) 𝑎 𝑓 : 𝐴 → B |𝑏̃| = |𝑎|
Filter 𝑎′ = filter(𝜑) 𝑎 𝜑 : B𝑛 → B |𝑎′| ≤ |𝑎|
Observer [] = observe(𝑓) 𝑎 𝑓 : 𝐴 → 1 0
Fold 𝑑 = fold(𝑓, 𝑖𝑛𝑖𝑡, 𝑝𝑎𝑟𝑡) 𝑐 𝑓 : 𝐷 × 𝐶 → 𝐷 |𝑑| ≤ |𝑐|

𝑖𝑛𝑖𝑡 : Opt(ℐ𝑑) → 𝐷
𝑝𝑎𝑟𝑡 : {ℐ𝑐} → P(ℐ𝑐)

Unfold 𝑐 = unfold(𝑝, 𝑔𝑒𝑛, 𝑙𝑎𝑏𝑒𝑙) 𝑑 𝑝 : 𝑁 → B |𝑐| ≥ |𝑑|
𝑔𝑒𝑛 : 𝑁 → 𝑁 × 𝐶
𝑙𝑎𝑏𝑒𝑙 : 1 → 𝐿

Window 𝑦 = window(𝑓, 𝑎𝑑𝑗, 𝑙𝑎𝑏𝑒𝑙) 𝑥 𝑓 : 𝑋 × Opt(𝑋) → 𝑌 |𝑦| = |𝑥|
𝑎𝑑𝑗 : ℐ𝑥 × ℐ𝑥 → B
𝑙𝑎𝑏𝑒𝑙 : 1 → 𝐿

2.5. Families of Data and Higher-Order Functions 13

Phlex, Release 0.3 (For Review)

A calculation using a HOF is then generally expressed in terms of:

1. The HOF to be used (fold, transform, etc.)

2. The operator(s) to be used by each HOF (+, 𝑤, etc.)

3. The family (or families) of data on which the HOFs are to be applied.

Phlex supports the HOFs listed in Table 2.2. As discussed later, each HOF’s operator is an algorithm registered with
the framework. Phlex will likely support other higher order functions as well.

2.6 Data Flow
In Section 2.4, the example was given for creating tracks from wires. The simplified expression for doing this was the
chained application of two functions 𝑓 and 𝑔 such that:

𝑡𝑠 = 𝑔 (𝑓 𝑤𝑠) = (𝑔 ∘ 𝑓) 𝑤𝑠

where 𝑤𝑠 and 𝑡𝑠 are the wires and tracks, respectively. An alternative representation is a directed graph

f
ws

g
hs ts

where the functions 𝑓 and 𝑔 are vertices or nodes and the data 𝑤𝑠 and 𝑡𝑠 are passed along arrows or edges that connect
the nodes9. The arrows indicate the flow of the data (or data flow) through the graph.

Some observations:

• The function 𝑓 returns hits that are unlabeled in the equational form. For the graph above, we explicitly label
those hits as ℎ𝑠 to emphasize that data are always passed along edges. If, however, the hits are not needed by any
other function in the graph, the two functions 𝑓 and 𝑔 can be replaced by their composition ℎ = 𝑔 ∘ 𝑓 , resulting
in potential performance improvements in computational efficiency and program memory usage.

g ○ f
ws ts

• Each edge of a directed graph must have a source (the tail of the arrow) and a target (the head of the arrow). This
means that whereas the equation does not need to specify where the 𝑤𝑠 wires originate (or where the 𝑡𝑠 tracks
end up), such locations must be specified in the graph. Any node that has only outgoing edges is called a source
(denoted by a solid dot), and any node that has only incoming edges is a sink (denoted by an encircled solid dot).

9 It is also possible to invert the view of the graph such that the data are treated as nodes and the functions as edges; such an approach yields a
data-centric graph, which is the line digraph of the function-centric graph shown above.

14 Chapter 2. High-Level Abstractions

Phlex, Release 0.3 (For Review)

2.6.1 Data Flow with Families
As mentioned earlier in Section 2.5, processing families of data is a critical aspect of obtaining physics results. The
data-flow discussion in the previous section naturally maps to applying the functions 𝑓 and 𝑔 to elements of families.
Specifically10:

• The families [𝑤𝑠𝑖], [ℎ𝑠𝑖], and [𝑡𝑠𝑖] are passed along the edges instead of the individual objects 𝑤𝑠, ℎ𝑠, and 𝑡𝑠.

• The functions 𝑓 and 𝑔 map to transform(𝑓) and transform(𝑔), respectively.

transform(f)
[wsi] transform(g)

[hsi] [tsi]

The above graph does not specify an implementation—assuming 𝑓 and 𝑔 are pure functions (see Section 2.4.1), the
same result is obtained if (a) full families are passed between the nodes, or (b) one element per family is passed at a
time. Determining whether option (a) or (b) is more efficient depends on the data passed between the nodes and the
overall constraints on the program.

One benefit to using a graph representation using data families and higher-order functions is the ability to easily express
folds and unfolds. As an illustration, consider the calculation of a sum of squares for all integers from 1 through 𝑛:

𝑆(𝑛) =

𝑛∑︁
𝑖=1

𝑖2

This calculation requires three separate steps:

1. an unfold called iota that, given an integer 𝑛, generates a sequence of integers from 1 through 𝑛,

2. a transformation that squares each integer in the sequence using an algorithm called square, and

3. a fold called sum that sums all squared integers.

The data-flow graph of individual objects looks like:

iota
n

square

1

2

⋮

n

sum

1

4

⋮

n2

S (n)

where each number is passed along its own edge to the nodes performing the calculation.
10 In Haskell (and, similarly, in category theory), this transformation is achieved through the List/fmap functor.

2.6. Data Flow 15

Phlex, Release 0.3 (For Review)

The summation formula for 𝑆(𝑛), however, can be expressed in terms of higher-order functions that reflect the three
steps above:

𝑆(𝑛) =

𝑛∑︁
𝑖=1

𝑖2 = fold(+, 0)⏟ ⏞
3. sum

transform(square)⏟ ⏞
2.

unfold(𝑔𝑟𝑒𝑎𝑡𝑒𝑟_𝑡ℎ𝑎𝑛_𝑧𝑒𝑟𝑜, 𝑑𝑒𝑐𝑟𝑒𝑚𝑒𝑛𝑡)⏟ ⏞
1. iota

𝑛

where:

1. iota or unfold(𝑔𝑟𝑒𝑎𝑡𝑒𝑟_𝑡ℎ𝑎𝑛_𝑧𝑒𝑟𝑜, 𝑑𝑒𝑐𝑟𝑒𝑚𝑒𝑛𝑡) is a function that returns a sequence given a value of 𝑛,

2. transform(square) is a function applied to the sequence generated in step 1.

3. sum or fold(+, 0) is a function that returns a single result when applied to the result of step 2.

Note that the unfold takes two operators: the predicate 𝑔𝑟𝑒𝑎𝑡𝑒𝑟_𝑡ℎ𝑎𝑛_𝑧𝑒𝑟𝑜, which tests whether the next generated
number is greater than zero, and the 𝑑𝑒𝑐𝑟𝑒𝑚𝑒𝑛𝑡 operator, which decrements the next generated number by 1.11 Once
the predicate returns false, the unfold stops generating numbers.

By adopting the HOF representation of the sum-of-squares problem, the data-flow graph is simplified:

iota
n

transform(square)
[i]

sum
[i2] S (n)

In addition, the topology of the family-based graph remains the same regardless of the value of 𝑛; the topology of the
object-based graph becomes intractable as 𝑛 increases.

The vast majority of graphs included in this design document adopt the family-based data-flow representation.

11 The same data flow can equivalently be represented with an unfold that uses the predicate 𝑙𝑒𝑠𝑠_𝑡ℎ𝑎𝑛_𝑜𝑟_𝑒𝑞𝑢𝑎𝑙_𝑡𝑜_𝑛 and the operator
increment, but starts with an initial value of 1. This other representation, however, requires an unfold predicate that depends on the value of 𝑛.

16 Chapter 2. High-Level Abstractions

CHAPTER

THREE

CONCEPTUAL DESIGN

ò Purpose

The conceptual design is not a reference manual; it is a high-level description of how the framework aims to satisfy
the stakeholder requirements (see Appendix B). The audience for the conceptual design is the physicist, algorithm
author, or framework program runner. More detailed design aspects in support of the conceptual model are given
in the technical design (under preparation).

Phlex adopts the data-flow approach discussed in Section 2.6.1. Instead of expressing scientific workflows as monolithic
functions to be executed, workflows are factorized into composable algorithms that operate on data products passed
among them [DUNE 1], [DUNE 111], [DUNE 20]. These algorithms then serve as operators to higher-order functions
(HOFs) that operate on data-product families.

To guide the discussion of Phlex’s conceptual model, we refer to Fig. 3.1, which shows a small fictitious workflow that
creates vertices from simulated energy deposits. Various framework aspects are demonstrated by that figure:

data-flow graph
The data-flow graph is formed by ingesting the configuration file and recording the data-product
dependencies required of each algorithm (see Section 3.1).

data-product flow
Data products (see Section 3.2) are passed along graph edges. As mentioned in Section 2.6.1, the
data passed between HOFs are expressed as families. Fig. 3.1 thus formally passes families (e.g.
[GoodHits𝑖𝑗𝑘]) between nodes12.

framework driver
The driver instructs the framework what to process (see Section 3.6).

The driver in Fig. 3.1 is configured so that all Spills in the specified ROOT input files are processed.

data-product providers
Data-product providers are framework components that provide data products from external entities
to downstream user algorithms (see Section 3.7). From a functional programming perspective they
are transforms that map a data cell to one of the data products within that data cell.

In the workflow, one provider reads a SimDepos data product from each Spill in the HDF5 input files,
and the other reads a single Geometry corresponding to the Job from a GDML file.

HOFs and user-provided algorithms
Arguably the most important aspect of the framework is how user-provided algorithms are bound to
HOFs and registered with the framework (see Section 3.3, Section 3.4 and Section 3.5).

12 In practice, elements of the family, not the full family itself, will be passed from one node to another. For memory purposes, it is also likely
that each element of the family is a lightweight reference (in C++, a pointer) to the data of relevance.

17

Phlex, Release 0.3 (For Review)

All seven HOFs supported by Phlex (see Table 2.2) are used in Fig. 3.1. For the main processing
chain of creating vertices:

• An unfold HOF is configured to create a family of Waveforms objects—creating one Waveforms
object per APA—from one SimDeps data product in each Spill.

• A configured transform HOF is run on the family of Waveforms objects to create a family of
GoodHits objects.

• To make a GoodTracks data product, a window algorithm is applied to pairs of GoodHits objects
that come from adjacent APAs.

• Lastly, another transform algorithm operates on the GoodTracks data products to produce ver-
tices.

There are additional parts of the graph that are not directly related to creating vertices:

• A fold algorithm is executed over the GoodHits data products to sum the hit energy (i.e.
TotalHitEnergy) across all APAs for a given Spill.

• After a filter has been applied with the predicate high_energy, an observe algorithm is used to
fill a histogram with hit-related information from the GoodHits data products.

data-product writers
Data-product writers are plugins that write data products to framework outputs (see Section 3.8)

Each of the five writers in Fig. 3.1 is responsible for writing to one or more output files.

resources
Most workflows require access to some external resource (see Section 3.9).

The histogramming resource in Fig. 3.1 enables the observe algorithm to fill and write histograms to
a ROOT analysis file.

Note that in this workflow, the names Spill and APA are not special to the Phlex framework; they are names (hypothet-
ically) chosen by the experiment. Each data product is also indexed, thus associating it with a particular data cell (e.g.
GoodHits3,5,9 denotes the GoodHits data product belonging to APA 9 of Spill 5 of Run 3).

3.1 Topology of the Data-Flow Graph
The graph shown in Fig. 3.1 is a close reflection of the graph used for scheduling algorithm execution. It is formed
from multiple ingredients, the most crucial of which is the program configuration (see Section 3.10). It is the program
configuration that specifies:

• the driver to use,

• the algorithms needed for creating, filtering, and observing data products,

• the specification of data products required and (where supported) created by each algorithm,

• which data products to write to output files,

• which data products to read from input files,

• any resources needed to process the data, and

• any other constraints to impose on the program.

The pattern used for constructing the data-flow graph is described in detail in the technical design (under preparation).
Here it is sufficient to note that the graph is primarily driven by which data products are specified to be written to output
(i.e. precious data products). By default, the framework will schedule for execution only those algorithms needed to
write precious data products. This means that not necessarily every algorithm in the program configuration will be
used in a general workflow.

18 Chapter 3. Conceptual Design

Phlex, Release 0.3 (For Review)

driver(Spill)

 Configuration

unfold(into_apas)

transform(find_hits)

[Waveformsi j k]

write(Waveforms)

[Waveformsi j k]

filter(high_energy)

[GoodHitsi j k]

window(make_tracks)

[GoodHitsi j k]

fold(sum_energy) write(GoodHits)

observe(histogram_hits)

[GoodHitsi j k ']
Histogram
 resource

transform(make_vertices)

 [GoodTracksi j k]

write(GoodTracks)

ROOT output file(s)

write(Vertices)

 [Verticesi j k]

write(TotalHitEnergy)

 [TotalHitEnergyi j]
ROOT

 analysis file

GDML file provide(Geometry)

HDF5 input files(s)

 [Job]

provide(SimDepos)

 [Spilli j]

[Geometry][Geometry] [SimDeposi j]

Fig. 3.1: A fictitious workflow showing how HOFs are used in a Phlex program. Each unshaded node represent a HOF
bound to a user-defined algorithm, whose name is shaded in blue. Each user-defined algorithm operates on arguments
received from the incoming arrows to the node: data products are passed along solid arrows; objects that provide access
to resources are passed along dashed arrows. Whereas single-dotted lines indicate communication of data through the
framework’s IO system, double-dotted lines denote communication of data with entities not directly related to the
framework. See text for workflow details.

3.1. Topology of the Data-Flow Graph 19

Phlex, Release 0.3 (For Review)

Each input file is able to report which data products it contains, and each algorithm-registeration statement (see Section
3.4) declares which data products are required [DUNE 65] and which data products are created [DUNE 156] by the
algorithm. These data-product dependencies, along with the dependencies implied by the resources, are sufficient to
establish the data-flow graph.

3.2 Data Organization
This section provides a conceptual overview of data products, data cells, data layers, and data-layer hierarchies, as
defined in [DUNE 85] [DUNE 86] [DUNE 87] [DUNE 88]. In addition, we discuss data-product families and data-
cell families. This section aims to establish a mental model for how all of these concepts facilitate scientific workflows
without delving into implementation specifics.

Data products represent things like raw detector readouts, calibration information, and derived physics quantities.
[DUNE 40]. We call these kinds of things represented by data products conceptual data products. Data product types
are the programming language representations of conceptual data products. A data layer is an experiment-defined level
of aggregation of data products. Some example data layers are Run, Subrun, Spill, and an interval of validity for some
flavor of calibration. Each Phlex job includes a Job data layer at the top of the data-layer hierarchy. A data cell is a
collection of data products, associated with a data layer. A data-cell family is a family of data cells that are in the same
data layer. The Job layer always includes a single data cell. Fig. 3.2 illustrates the relationships between all of these.

Data layers

Job

Run

Spill

APA

Job family Job

Run1 Run2

Spill1,1 Spill1,2 Spill2,1Spill family

APA family APA1,1,1 ... APA1,1,n APA1,2,1 ... APA1,2,n APA family ...

Waveforms family Waveforms1,1,1 ... Waveforms1,1,n Waveforms1,2,1 ... Waveforms1,2,n Waveforms family

Fig. 3.2: The data organization corresponding to part of Fig. 3.1. The framework-provided Job data layer and three
different user-defined (not special to the Phlex framework) data layers are shown: Run, Spill, and APA. Rectangles
with labels Run𝑖, Spill𝑖,𝑗 , and APA𝑖,𝑗,𝑘 represent data cells. The pale green rectangles show two data-cell families;
these are identified as families because they are the result of executing the unfold(into_apas) node shown in Fig. 3.1.
A solid line from one data cell to another data cell represents a logical association between the two data cells. The
bottom rectangle shows that Waveforms1,1,1 is in the data cell APA1,1,1, etc. Each pale purple rectangle indicates the
data-product family created by unfolding each SimDepos object as shown in Fig. 3.1.

In Fig. 3.2, the Run data layer exists, but as no algorithm in Fig. 3.1 requires any data products from a Run data cell,
the framework does not create any data-cell families corresponding to the Run.

20 Chapter 3. Conceptual Design

Phlex, Release 0.3 (For Review)

3.2.1 Data Products
Data products are entities that encapsulate processed or raw data, of all kinds, separate from the algorithms that create
them [DUNE 110]. They serve as the primary medium for communication between algorithms, ensuring seamless
data exchange across processing steps [DUNE 111]. They are associated with (rather than containing) metadata and
provenance information that describe how the data products were created [DUNE 121]. They are not tied to specific
hardware or algorithm implementations, ensuring independence and reproducibility [DUNE 63]. They are also not tied
to any specific IO back end, but must support reading and writing with both ROOT [DUNE 74] and HDF5 [DUNE
141]. They enable the framework to present data produced by one algorithm to subsequent algorithms, supporting
iterative and chained processing workflows [DUNE 20].

3.2.1.1 Structure and Representation

The in-memory layout of a data product is determined by its type in the specified programming language. Phlex does not
require that the in-memory representation of a data product shall be the same as its persistent representation [DUNE
2]. In general, a single conceptual data product can be represented by multiple programming language types. This
includes representing a single conceptual data product in multiple supported programming languages.

The framework provides the ability to determine the memory footprint of each data product [DUNE 154].

3.2.1.2 Defining Data Product Types

Data product types are not defined by the framework. Framework users are expected to define their own data product
types [DUNE 85].

3.2.2 Data Layers, Data Cells, and Families
As illustrated in Fig. 3.2, data products are organized into user-defined data cells, families, layers, and hierarchies,
supporting varying levels of granularity [DUNE 86] [DUNE 87] [DUNE 88]. They can be unfolded into finer-grained
units, enabling detailed analysis or reprocessing at different scales [DUNE 43]. This provides the ability to process
data too large to fit into memory at one time [DUNE 25].

3.2.3 Data Product Management
Management of the data products returned by an algorithm is taken over by the framework. Read-only access to input
data products is provided to algorithms [DUNE 121] [DUNE 130]. Read-only access to a data product must not mutate
it. Data products that are intended to be written out are sent to the IO system as soon as they are created [DUNE
142]. Data products are removed from memory as soon as they are no longer needed for writing or as input to another
algorithm [DUNE 142].

3.2.4 Data Product Identification
Each data product is associated with a specific set of metadata describing the algorithms and configurations used in
their creation. These metadata allow that creation to be reproducible [DUNE 122]. The metadata are stored along with
the data in the framework output file, and the IO interface allows access to the metadata [DUNE 121].

The data products created by an algorithm are associated with metadata that identify the algorithm that created them.
Such metadata include:

• the creator, the name of the algorithm that created the data product

• an identifier for the data cells with which the data product is associated (e.g. Spill, Run, Calibration Interval, or
other experiment-defined layer)

• the processing phase, an identifier for the job in which the data product was created

• an individual name for the data product (which may be empty), to distinguish between multiple products of the
same type created by the same algorithm.

3.2. Data Organization 21

Phlex, Release 0.3 (For Review)

In addition to these metadata, a data product is also specified by its type.

The metadata are stored in the framework output file, and the IO interface allows access to the metadata [DUNE 121].

The metadata are also used in data product lookup, to specify which data products are to be provided as inputs to an
algorithm. The algorithms are configured to identify the inputs in which they are interested by selecting on any of the
metadata defined above, as well as by the programming language types of their inputs.

3.3 Algorithms
As mentioned in Section 2.5, an algorithm is registered with the framework as an operator to a higher-order function
(HOF). In general, Phlex supports the registration of C++ algorithms with function signatures like (see Section 3.5 for
a list of supported HOFs):

return_type function_name(P1, Pn..., Rm...) [quals];

where the types P1, Pn... denote types of data products and the types Rm... indicate resources. The bracketed
[quals] term indicates that Phlex allows for class member functions that have trailing qualifiers (e.g. const). Each
registered function must accept at least one data product.

The signature of a Python algorithm needs to be available through reflection, either because the function is JITed (e.g.
with Numba), bound (e.g. with ctypes), or annotated. The latter is good practice regardless and commonly required by
Python coding conventions:

def function_name(p1: P1, pn: Pn..., rm: Rm...) -> return_type:

We will first discuss the data-product and resource types in Section 3.3.1, followed by the return types in Section 3.3.2,
and then the function name and optional qualifers in Section 3.3.3.

3.3.1 Input Parameters
A data product of type P may be presented to a C++ algorithm if the corresponding input parameter (i.e. the relevant
P1, ..., PN type) is one of the following:

• P const&— read-only access to a data product provided through a reference

• P const*— read-only access to a data product provided through a pointer

• P— the data product is copied into an object (assumes data product is copyable)13

• phlex::handle<P> — a lightweight object that provides read-only access to a data product as well as any
metadata associated with it

For each of these cases, the data product itself remains immutable. A Python algorithm can receive a phlex::handle
or a direct reference to the data product. There is no equivalent language support for read-only access, but it will be
enforced where possible.

Whereas data products may be copied, resources of type R may not. The following types are therefore supported:

• R const&— read-only access to a resource provided through a reference

• R const*— read-only access to a resource provided through a pointer

• R&— read-and-write access to a resource provided through a reference (if supported by resource)

• R*— read-and-write access to a resource provided through a pointer (if supported by resource)

Resources are described in more detail in Section 3.9.
13 In C++, the function signature corresponds to the function declaration [Cpp-Function], for which the type P and P const are treated identically

by the compiler. However, for the function implementation or definition, algorithm authors are encouraged to use P const to help guarantee the
immutability of data.

22 Chapter 3. Conceptual Design

Phlex, Release 0.3 (For Review)

3.3.2 Return Types
The meaning of an algorithm’s return type depends on the HOF and is discussed in the Section 3.5. However, to
simplify the discussion we introduce to concept of the created data-product type. For Phlex to appropriately schedule
the execution of algorithms and manage the lifetimes of data products, the framework itself must retain ownership of the
data products. This means that the data products created by algorithms must have types that connote unique ownership.
An algorithm’s returned object must therefore model a created data-product type, which can be:

• a value of type T, or

• a std::unique_ptr<T>, where the created object is non-null.

For Python, this means that an algorithm should not retain any external hard references to a returned object.

The following types (or their equivalents) are forbidden as created data-product types because they do not imply un-
ambiguous ownership:

• bare pointer types, such as T* or T const*

• reference types, such as T& or T const&

3.3.3 Function Names and Qualifiers
The function_name in Section 3.3 above may be any function name supported by the C++ language. Code authors
should aim to implement algorithms as free functions. However, in some cases it may be necessary for class member
functions to be used instead. When member functions are required, the qualifier const should be specified to indicate
that the class instance remains immutable during the execution of the member function14.

3.4 Framework Registration
Consider the following C++ classes and function:

class hits { ... };
class waveforms { ... };

hits find_hits(waveforms const& ws) { ... }

where the implementations of waveforms, hits, and find_hits are unspecified. Suppose a physicist would like to
use the function find_hits to transform a data product labeled "Waveforms" to one labeled "GoodHits" for each
spill with unlimited concurrency. This can be achieved by in terms of the C++ registration stanza:

PHLEX_REGISTER_ALGORITHMS() // <== Registration opener (w/o configuration object)
{
products("GoodHits") = // 1. Specification of output data product from find_hits
transform(// 2. Higher-order function
"hit_finder", // 3. Name assigned to HOF
find_hits, // 4. Algorithm/HOF operation
concurrency::unlimited // 5. Allowed CPU concurrency

)
.family(
"Waveforms"_in("APA") // 6. Specification of input data-product family (see text)

);
}

14 Phlex permits the registration of member functions that do not use the const qualifier. However, using such member functions is highly
discouraged as it indicates that a class instance is modifiable during member-function execution, thus placing significant demands on the code author
to ensure thread-safe code execution (see Section 2.4.1).

3.4. Framework Registration 23

Phlex, Release 0.3 (For Review)

The registration stanza is included in a C++ file that is compiled into a module, a compiled library that is dynamically
loadable by Phlex.

A Python algorithm can be registered with its own companion C++ module or through the Python import helpers that
make use of a pre-built, configurable, Phlex module. For the sake of consistency and ease of understaning, the helpers
have the same naming and follow the same conventions as the C++ registration.

The stanza is introduced by an opener—e.g. PHLEX_REGISTER_ALGORITHMS()—followed by a registration block, a
block of code between two curly braces that contains one or more registration statements. A registration statement is a
programming statement that closely follows the equation described in Section 3.5 and is used to register an algorithm
with the framework.

[𝑏𝑖]𝑖∈ℐoutput
= HOF(𝑓1, 𝑓2, . . .) [𝑎𝑖]𝑖∈ℐinput

Specifically, in the registration stanza above, we have the following:

products(...)

1. This is the equivalent of the output family [𝑏𝑖]𝑖∈ℐoutput
, which is formed from specification(s) of

the data product(s) created by the algorithm [DUNE 156]. One of the fields of the data-product
specification is the data layer to which the data products will belong [DUNE 90]. Phlex does
not require the output and input data layers to be the same.

transform(...)
Fully specifying the mathematical expression HOF(𝑓1, 𝑓2, . . .) requires several items:

2. The HOF to be used,

3. The name to assign to the configured HOF,

4. The algorithm/HOF operator(s) to be used (i.e. 𝑓1, 𝑓2, . . .), and

5. The maximum number of CPU threads the framework can use when invoking the algorithm
[DUNE 152].

family(...)

6. The specification of the input family [𝑎𝑖]𝑖∈ℐinput
requires (a) the specification of data products

that serve as input family elements [DUNE 65], and (b) the label of the data layer in which
the input data products are found. In the registration code above, this is achieved by providing
the expression "Waveforms"_in("APA"), which instructs the framework to create a family of
waveforms that reside in APAs15.

The set of information required by the framework for registering an algorithm largely depends on the HOF being used
(see the Section 3.5 for specific interface). However, in general, the registration code will specify which data products
are required/produced by the algorithm [DUNE 111] and the hardware resources required by the algorithm [DUNE 9].
Note that the input and output data-product specifications are matched with the corresponding types of the registered
algorithm’s function signature. In other words:

• "Waveforms" specifies a data product whose C++ type is that of the first (and, in this case, only) input parameter
to find_hits (i.e. waveforms).

• "GoodHits" specifies a data product whose C++ type is the hits return type of find_hits.

When executed, the above code creates a configured higher-order function, which serves as a node in the function-
centric data-flow graph.

The registration block may contain any code supported by C++. The block, however, must contain a registration
statement to execute an algorithm.

15 The token _in is a suffix that is part of a user-defined literal [Cpp-UserLiteral], which permits an expression like "Waveforms"_in("APA").
The type returned by the expression is implementation-defined and has no public interface needed by the user.

24 Chapter 3. Conceptual Design

Phlex, Release 0.3 (For Review)

s Important

A module must contain only one registration stanza. Note that multiple registration statements may be made in
each stanza.

3.4.1 Algorithms with Multiple Input Data Products
The registration example given above in Section 3.4 creates an output family by applying a one-parameter al-
gorithm find_hits to each element of the input family, as specified by family("Waveforms"_in("APA")).
In many cases, however, the algorithm will require more than one data product. Consider another algorithm
find_hits_subtract_pedestals, which forms hits by first subtracting pedestal values from the waveforms, both of
which are presented to the algorithm as data products from the APA. The interface of the algorithm and its registration
would look like:

class hits { ... };
class waveforms { ... };
class pedestals { ... };
hits find_hits_subtract_pedestals(waveforms const&, pedestals const&) {...}

PHLEX_REGISTER_ALGORITHMS(config)
{
products("GoodHits") =
transform("find_hits", find_hits_subtract_pedestals, concurrency::unlimited)
.family("Waveforms"_in("APA"), "Pedestals"_in("APA"));

}

The elements of the input family are thus pairs of the data products labeled "Waveforms" and "Pedestals"
in each APA.16 In this case, the data cell for both data products is the same—i.e. for a given invocation of
find_hits_subtract_pedestals, both data products will be associated with the same APA.

There are cases, however, where an algorithm needs to operate on data products from different data cells [DUNE 89].

ò Note

The number of arguments presented to the family(...) clause must match the number of input parameters to the
registered algorithm. The order of the family(...) arguments also corresponds to the order of the algorithm’s
input parameters.

3.4.1.1 Data Products from Different Data Layers

Consider the operator make_vertices in Fig. 3.1 that requires two arguments: the GoodTracks collection for each APA
(data layer APA), and the detector Geometry that applies for the entire job (data layer Job)17. This would be expressed
in C++ as:

vertices make_vertices(tracks const&, geometry const&) { ... }

PHLEX_REGISTER_ALGORITHMS(config)
{
products("Vertices") =

(continues on next page)

16 The operation that forms the family [(Waveforms𝑖,Pedestals𝑖)]𝑖∈ℐAPA
from the separate families [Waveforms𝑖]𝑖∈ℐAPA

and [Pedestals𝑖]𝑖∈ℐAPA
is called zip.

17 As shown in Fig. 3.2, there is a Job data layer, to which job-level data products may belong.

3.4. Framework Registration 25

Phlex, Release 0.3 (For Review)

(continued from previous page)

transform("vertex_maker", make_vertices, concurrency::unlimited)
.family("GoodHits"_in("APA"), "Geometry"_in("Job"));

}

where the data layers are explicit in the family statement.

Phlex supports such uses cases [DUNE 113], even if the specified data layers are unrelated to each other. For example,
suppose an algorithm needed to access a data product from a Spill, and it also required a calibration offset provided from
an external database table [DUNE 35]. Instead of providing a separate mechanism for handling calibration constants,
a separate layer could be invented (e.g. Calibration) whose data cells corresponded to intervals of validity. So long as
a relation can be defined between specific Spill data cells and specific Calibration data cells, the framework can use
that relation to form the input family of Spill-Calibration data-product pairs that are presented to the algorithm. How
the relation between data cells is defined is referred to as data marshaling, and it is described further in the technical
design (under preparation).

3.4.1.2 Data Products from Adjacent Data Cells

In some cases, it may be necessary to simultaneously access data products from adjacent data-products sets [DUNE 91],
where adjacency is defined by the user [DUNE 92]. The notion of adjacency can be critical for (e.g.) time-windowed
processing (see Section 3.5.7), where the details of the “next” time bin are needed to accurately calculate properties of
the “current” time bin.

Supporting the processing of adjacent data cells is described further in the technical design (under preparation).

3.4.2 Accessing Configuration Information
Instead of hard-coding all pieces of registration information, it is desirable to specify a subset of such information
through a program’s run-time configuration. To do this, an additional argument (e.g. config) is passed to the regis-
tration opener:

PHLEX_REGISTER_ALGORITHMS(config)
{
auto selected_data_layer = config.get<std::string>("data_layer");

products("GoodHits") =
transform("hit_finder", find_hits, concurrency::unlimited)
.family("Waveforms"_in(selected_data_layer));

}

ò Note

As discussed in the technical design (under preparation), the registration code will have access only to the configu-
ration relevant to the algorithm being registered, and to certain framework-level configuration such as debug level,
verbosity, or parallelization options.

Except for the specification of find_hits as the algorithm to be invoked, and transform as the HOF, all other pieces
of information may be provided through the configuration.

26 Chapter 3. Conceptual Design

Phlex, Release 0.3 (For Review)

3.4.3 Framework Dependence in Registration Code
Usually, classes like waveforms and hits and algorithms like find_hits are framework-independent (see Section
1.4). There may be scenarios, however, where dependence on framework interface is required, especially if framework-
specific metadata types are used by the algorithm. In such cases, it is strongly encouraged to keep framework depen-
dence within the module itself and, more specifically, within the registration stanza. This can be often achieved by
registering closure objects that are generated by lambda expressions.

For example, suppose a physicist would like to create an algorithm find_hits_debug that reports a spill number when
making tracks. By specifying a lambda expression that takes a phlex::handle<waveforms> object, the data product
can be passed to the find_hits_debug function, along with the spill number from the metadata accessed from the
handle:

hits find_hits_debug(waveforms const& ws, std::size_t apa_number) { ... }

PHLEX_REGISTER_ALGORITHMS(m)
{
products("GoodHits") =
transform(
"hit_finder",
[](phlex::handle<waveforms> ws) { return find_hits_debug(*ws, ws.id().number()); },
concurrency::unlimited

)
.family("Waveforms"_in("APA"));

}

The lambda expression does depend on framework interface; the find_hits_debug function, however, retains its
framework independence.

3.4.4 Member Functions of Classes
In some cases, it may be necessary to register a class and its member functions with the framework. This is done by first
creating an instance of the class by invoking make<T>(args...), where T is the user-defined type, and args... are
the arguments presented to T’s constructor. For example, the find_hits algorithm author could have instead created
a hit_finder class, whose constructor takes a parameter called sigma_threshold:

class hit_finder {
public:
hit_finder(float sigma_threshold);
hits find(waveforms const& ws) const;
...

};

PHLEX_REGISTER_ALGORITHMS(config)
{
auto sigma_threshold = config.get<float>("sigma_threshold");
auto selected_data_layer = config.get<std::string>("data_layer");

products("GoodHits") =
make<hit_finder>(sigma_threshold) // <= Make framework-owned instance of hit_finder
.transform("hit_finder", &hit_finder::find, concurrency::unlimited)
.family("Waveforms"_in(selected_data_scope));

}

Note that the hit_finder instance created in the code above is owned by the framework. The hit_finder::find

3.4. Framework Registration 27

Phlex, Release 0.3 (For Review)

member function’s address is registered in the transform(...) clause, thus instructing the framework to invoke find,
bound to the framework-owned hit_finder instance.

ò Note

Algorithm authors should first attempt to implement algorithms as free functions (see Section 2.4.1). Registering
class instances and their member functions with the framework should only be considered when:

• multiple processing steps must work together, relying on shared internal data, or

• supporting legacy code that relies on object-oriented design.

3.4.5 Overloaded Functions
Phlex performs a substantial amount of type deduction through the transform(...) clause. This works well except
in cases where the registered algorithms are overloaded functions. For example, suppose one wants to register C++’s
overloaded std::sqrt(...) function with the framework. Simply specifying transform(..., std::sqrt) will
fail at compile time as the compiler will not be able to determine which overload is desired.

Instead, the code author can use the following18:

transform(..., [](double x){ return std::sqrt(x); }, ...);

where the desired overload is selected based on the double argument to the lambda expression.

3.5 Supported Higher-Order Functions
In Phlex, HOFs transform one family to another:

[𝑏𝑖]𝑖∈ℐoutput
= HOF(𝑓1, 𝑓2, . . .) [𝑎𝑖]𝑖∈ℐinput

where the functions 𝑓1, 𝑓2, . . . are operators required by the HOF. Note that the output index set ℐoutput is not necessarily
the same as the input index set ℐinput.

In what follows, a family [𝑎𝑖]𝑖∈ℐ𝑎 will often be represented by a single variable 𝑎. Whether a variable name (e.g. 𝑎)
represents a family or an operation to a higher-order function will be apparent based on context.

Each HOF below also supports the label : 1 → 𝐿 operator, where the output data layer is user-specifiable. The label
operator is explicitly mentioned only for those HOFs that require it–i.e. unfold and window19.

3.5.1 Transforms

Transform Operator Output family length
𝑏 = transform(𝑓) 𝑎 𝑓 : 𝐴 → 𝐵 |𝑏| = |𝑎|

The transform is the simplest HOF whose algorithms create data products. Specifically, the algorithm 𝑓 is applied to
each element of the input family 𝑎, creating a corresponding data product in the output family 𝑏:

𝑏 = [𝑏𝑖]𝑖∈ℐ𝑎
= [𝑓 𝑎𝑖]𝑖∈ℐ𝑎

= transform(𝑓) [𝑎𝑖]𝑖∈ℐ𝑎

where 𝑏𝑖 = 𝑓 𝑎𝑖. Note that the index set of the output family is the same as the index set of the input family.
18 Equivalently, one can use the obscure syntax transform(..., static_cast<double(*)(double)>(std::sqrt), ...), where
std::sqrt is cast to the desired overload.

19 The specific rules by which the label operator can be used are given in the technical design (under preparation).

28 Chapter 3. Conceptual Design

Phlex, Release 0.3 (For Review)

3.5.1.1 Operator Signature

Operator Allowed signature
𝑓 return_type function_name(P1, Pn..., Rm...) [quals];

The return_typemust model the created data-product type described in Section 3.3.2. An algorithm may also create
multiple data products by returning a std::tuple<T1, ..., Tn> where each of the types T1, ..., Tn models a
created data-product type.

3.5.1.2 Registration Interface

To illustrate the different ways a transform’s algorithm can be registered with Phlex, we use the following classes and
functions, which are presumably defined in some experiment libraries.

class geometry { ... };
class hits { ... };
class tracks { ... };
class vertices { ... };
class waveforms { ... };

hits find_hits(waveforms const&) { ... }
vertices make_vertices(geometry const&, tracks const&) { ... }

std::tuple<int, int> count_good_hits(hits const&) { ... }
// Return type: first number = number of good hits
// second number = number of all hits

Transform with one argument (default output product name)

PHLEX_REGISTER_ALGORITHMS(config)
{
transform("hit_finder", find_hits, concurrency::unlimited)
.family("Waveforms"_in("APA"));

}

Transform with one argument (user-specified output product name)
As shown in Fig. 3.1 and described in Section 3.4

PHLEX_REGISTER_ALGORITHMS(config)
{
products("GoodHits") =
transform("hit_finder", find_hits, concurrency::unlimited)
.family("Waveforms"_in("APA"));

}

Transform with two arguments (default output product name)
As shown in Fig. 3.1 and described in Section 3.4.1.1

PHLEX_REGISTER_ALGORITHMS(config)
{
products("Vertices") =
transform("vertex_maker", make_vertices, concurrency::unlimited)

(continues on next page)

3.5. Supported Higher-Order Functions 29

Phlex, Release 0.3 (For Review)

(continued from previous page)

.family("Geometry"_in("Job"), "GoodTracks"_in("APA"));
}

Transform creating two data products (user-specified output product names)

PHLEX_REGISTER_ALGORITHMS(config)
{
products("NumGoodHits", "NumAllHits") = // <= One name per tuple slot of return type
transform("hit_counter", count_good_hits, concurrency::unlimited)
.family("GoodHits"_in("APA"));

}

3.5.2 Observers

Observer Operator Output family length
[] = observe(𝑓) 𝑎 𝑓 : 𝐴 → 1 0

There are cases where a user may wish to inspect a data product without adjusting the data flow of the program. This
is done by creating an algorithm called an observer, which may access a data product but create no data products. An
example of this is writing ROOT histograms or trees that are not intended to be used in another framework program.

Note that, in a purely functional approach, it is unnecessary to invoke an observer as no data will be produced by it20.
Phlex, however, supports observers as physicists rely on the ability to induce side effects to analyze physics data.

Unlike filters and predicates, observers (by definition) are allowed to be the most downstream algorithms of the graph.

3.5.2.1 Operator Signature

Operator Allowed signature
𝑓 void function_name(P1, Pn..., Rm...) [quals];

3.5.2.2 Registration Interface

The below shows how the histogram_hits operator in Fig. 3.1 would be registered in C++21. It uses the
resource<histogramming> interface to provide access to a putative histogramming resource (see Section 3.9).

class hits { ... };
void histogram_hits(hits const&, TH1F&) { ... }

PHLEX_REGISTER_ALGORITHMS(m, config)
{
auto h_resource = m.resource<histogramming>();

observe(histogram_hits, concurrency::serial)
.family("GoodHits"_in("APA"), h_resource->make<TH1F>(...));

}

20 An observer is a special case of a filter that rejects all data presented to it.
21 For this example, we ignore the need to filter "GoodHits" using the high_energy predicate. This is addressed in Section 3.5.4.

30 Chapter 3. Conceptual Design

Phlex, Release 0.3 (For Review)

Note that the number of arguments presented to the family(...) call matches the number of input parameters of the
registered algorithm histogram_hits. This indicates that each invocation of histogram_hits will be presented
with one "GoodHits" data product and the TH1F resource.

3.5.3 Predicates

Predicate Operator Output family length

𝑏̃ = predicate(𝑓) 𝑎 𝑓 : 𝐴 → B |𝑏̃| = |𝑎|

The predicate HOF is a transform (see Section 3.5.1) whose operator returns Boolean true or false. However, instead of
the framework interpreting the Boolean result as a data product, the return value is used to short-circuit the processing
of the data-flow graph for data products that do not meet the specified criteria. This short-circuiting behavior is known
as filtering and is described in Section 3.5.4.

Note that the output family generated by the predicate is the same length as the input family but with values that are
either Boolean true or false. It is not until the predicate results are used by the filter that an input family is potentially
reduced in length.

ò Note

Phlex will schedule a predicate HOF for execution only if it is included in a predicate expression (see Section 3.5.4).

3.5.3.1 Operator Signature

Operator Allowed signature
𝑓 bool function_name(P1, Pn..., Rm...) [quals];

3.5.3.2 Registration Interface

The workflow in Fig. 3.1 demonstrates a use of a predicate in the filter(high_energy) node, where the predicate is
high_energy that operates on each GoodHits data product. Although Fig. 3.1 does not include an explicit node for the
high_energy predicate (for reasons of exposition), the predicate HOF does have its own node, which is then bound to
one or more filters via predicate expressions. The registration for the predicate node in Fig. 3.1 would look like:

class hits { ... };
bool high_energy(hits const& hs) { ... }

PHLEX_REGISTER_ALGORITHMS(config)
{
predicate("high_energy", high_energy, concurrency::unlimited)
.family("GoodHits"_in("APA"));

}

3.5.4 Filtering

Filter Operator Output family length
𝑎′ = filter(𝜑) 𝑎 𝜑 : B𝑛 → B |𝑎′| ≤ |𝑎|

3.5. Supported Higher-Order Functions 31

Phlex, Release 0.3 (For Review)

As mentioned in Section 3.5.3, the execution of workflow graph can be short-circuited if data products do not meet
specified criteria. This process, known as filtering, effectively shortens the input family 𝑎 by retaining only those entries
that satisfy a predicate 𝜑, thus creating a different family 𝑎′ composed of elements from 𝑎.

Filtering is of interest only when there is a downstream node that can receive the filtered family. Therefore, Phlex will
not schedule a filter for execution if the only nodes downstream of it are other filters or predicates.

Filtering can be applied to the input data-product families of any HOFs without explicitly registering a filter HOF.
This is done through a predicate expression, which is a stringized form of the predicate 𝜑 that is applied to the input
data-product family, retaining only the elements that satisfy the predicate.

3.5.4.1 Predicate Expression

The predicate 𝜑 is Boolean expression whose input arguments correspond to the Boolean results of explicitly registered
predicates. For example, in Fig. 3.1, the predicate in filter(high_energy) is high_energy, which is an explicitly registered
predicate, as presented in Section 3.5.3.2.

It is possible for one filter named "only_high_energy" to use as its predicate high_energy, whereas another filter
named "not_high_energy" could use the negation filter(¬high_energy). In this case, the predicate high_energy is
executed only once, but its value can be used in different ways in the predicate expression.

A predicate expression can be evaluated on a higher-level data cell than the data-product family in question. For
example, suppose none of the GoodHits data products in a given Spill were suitable for processing. It is possible to
create a filter that would reject all GoodHits data products from that Spill even though the predicate itself interrogated
only the Spill information and not the lower-level good-hits information from the APA.

The supported grammar of the predicate expression is discussed in the technical design (under preparation).

3.5.4.2 Registration interface

The following example shows the complete registration for histogramming the filtered GoodHits data products shown
in Fig. 3.1.

class hits { ... };
void histogram_hits(hits const&, TH1F&) { ... }

PHLEX_REGISTER_ALGORITHMS(m, config)
{
auto h_resource = m.resource<histogramming>();

observe(histogram_hits, concurrency::serial)
.family("GoodHits"_in("APA"), h_resource->make<TH1F>(...))
.when("high_energy"); // <= predicate expression within the when(...) call

}

In practice, it is convenient to specify a predicate expression as part of a Phlex program’s run-time configuration instead
of hard-coded into a compiled library. Phlex allows users to specify predicate expressions in a program configuration:

{
Speculative configurations for two observer nodes that use the same module library
histogram_high_energy_hits: {
plugin: "histogram_hits.so",

},
histogram_low_energy_hits: {
plugin: "histogram_hits.so",
when: "!high_energy" # Negate filter, overriding compiled when(...) clause

(continues on next page)

32 Chapter 3. Conceptual Design

Phlex, Release 0.3 (For Review)

(continued from previous page)

},
}

Note that specifying a predicate expression via the when configuration parameter overrides whatever predicate expres-
sion may have been hard-coded into the compiled module.

3.5.5 Partitioned Folds

Partitioned fold Operators Output family length
𝑑 = fold(𝑓, init, part) 𝑐 𝑓 : 𝐷 × 𝐶 → 𝐷 |𝑑| ≤ |𝑐|

init : Opt(ℐ𝑑) → 𝐷
part : {ℐ𝑐} → P(ℐ𝑐)

As mentioned in Section 2.5, a fold can be defined as a transformation of a family of data to a single value:

𝑑 = fold(𝑓, init) [𝑐𝑖]𝑖∈ℐ𝑐

where the user-defined operation 𝑓 is applied repeatedly between an accumulated value (initialized by 𝑖𝑛𝑖𝑡) and each
element of the input family.

In a framework context, however, multiple fold results are often desired in the same program for the same kind of
computation. Consider the workflow in Fig. 3.1, which processes Spills, identified by the index 𝑗 or, more specifically,
the tuple (𝑆 𝑗). Each Spill is unfolded into a family of APAs, which are identified by the pair of indices 𝑗𝑘 or, more
specifically, the tuple (𝑆 𝑗,𝐴 𝑘). The energies of the GoodHits data products in Fig. 3.1 are summed across APAs per
Spill using the fold(sum_energy) node.

Instead of creating one fold result, we thus use a partitioned fold to create one summed energy data-product per Spill:

[𝐸(𝑆 1), . . . , 𝐸(𝑆 𝑛)]

= fold(sum_energy, init, into_spills) [ℎ𝑠(𝑆 1, 𝐴 1), ℎ𝑠(𝑆 1, 𝐴 2), . . . , ℎ𝑠(𝑆 𝑛, 𝐴 1), ℎ𝑠(𝑆 𝑛, 𝐴 2), . . .]

where 𝐸(𝑆 𝑗) denotes the TotalHitEnergy data product for Spill 𝑗, and ℎ𝑠(𝑆 𝑗, 𝐴 𝑘) is the GoodHits data product for
APA 𝑘 in Spill 𝑗.

The above equation can be expressed more succinctly as:

[𝐸𝑗]𝑗∈ℐout = fold(sum_energy, init, into_runs) [ℎ𝑠𝑖]𝑖∈ℐin

where

ℐin = {(𝑆 1, 𝐴 1), (𝑆 1, 𝐴 2), . . . , (𝑆 𝑛, 𝐴 1), (𝑆 𝑛, 𝐴 2), . . . }, and
ℐout = {(𝑆 1), . . . , (𝑆 𝑛)} .

3.5.5.1 Partitions

Factorizing a set of data into non-overlapping subsets that collectively span the entire set is called creating a set partition
[Wiki-Partition]. Each subset of the partition is called a cell22. In the above example, the role of the into_spills operation
is to partition the input family into Spills so that there is one fold result per Spill. In general, however, the partitioning
function is of the form part : {ℐ𝑐} → P(ℐ𝑐), where:

• the domain is the singleton set that contains only the index set ℐ𝑐 (i.e. part can only be invoked on ℐ𝑐), and

• the codomain is the set of partitions of ℐ𝑐 or P(ℐ𝑐); note that the output index set ℐ𝑑 ∈ P(ℐ𝑐).
22 The term data cell used elsewhere in this document is intended to closely reflect the concept of the partition cell.

3.5. Supported Higher-Order Functions 33

Phlex, Release 0.3 (For Review)

The function part also establishes an equivalence relationship on the index set ℐ𝑐, where each element of the index
set is mapped to a cell of the partition. The number of elements in the output family 𝑑 corresponds to the number of
partition cells.

As of this writing, the only partitions supported are those that correspond to the names of data layers. The partition
into_spills can thus be represented by the string "Spill", which denotes that there is one partition spell per Spill.

3.5.5.2 Initializing the Accumulator

A crucial ingredient of the fold is the accumulator, which stores the fold result while it is being formed. Each accumu-
lator is initialized by invoking a user-defined operation init : Opt(ℐ𝑑) → 𝐷, which returns an object that has the same
type 𝐷 as the fold result23. The Opt(ℐ𝑑) domain means that:

1. init can receive an argument corresponding to the identifier of a cell, which is a member of the output index set
ℐ𝑑. In the example above, the relevant identifier would be that of the Spill–i.e. (𝑆 𝑗).

2. init can be invoked with no arguments, thus producing the same value each time the accumulator is initialized.
This is equivalent to initializing the accumulator with a constant value.

The implementation of init for the total good-hits energy fold results is to return the constant 0.

3.5.5.3 Fold Operation

A cell’s fold result is obtained by repeatedly applying a fold operation to the cell’s accumulator and each element of
that cell’s input family. The fold operation has the signature 𝑓 : 𝐷 × 𝐶 → 𝐷, where 𝐷 represents the type of the
accumulator/fold result, and 𝐶 is the type of each element of the input family.

In the above example, the function sum_energy receives a floating-point number 𝐸(𝑆 𝑖), representing the accumulated
good-hits energy for Spill 𝑗 and “combines” it with the good-hits object ℎ𝑠(𝑆 𝑗, 𝐴 𝑘) that belongs to APA 𝑘 in spill 𝑗.
This combination involves calculating the energy represented by the GoodHits data product ℎ𝑠(𝑆 𝑗, 𝐴 𝑘) and adding
that to the accumulated value. This “combined” value is then returned by sum_energy as the updated value of the
accumulator24. The function sum_energy is repeatedly invoked to update the accumulator with the GoodHits data
product. Once all GoodHits data products in Spill 𝑗 have been processed by sum_energy, the accumulator’s value
becomes the fold result for that Spill.

3.5.5.4 Operator Signatures

Operator Allowed signature
𝑓 void function_name(result_type&, P1, Pn..., Rm...) [quals];
init as constant: result_type{...}

as function: result_type function_name() [quals];
as function: result_type function_name(<cell identifier>) [quals];

part Name of data layer for output data product

The fold’s result_type must model the created data-product type described in Section 3.3.2. A fold algorithm may
also create multiple data products by using a result_type of std::tuple<T1, ..., Tn> where each of the types
T1, ..., Tn models a created data-product type.

23 It is acceptable for init to return a type that is convertible to the accumulator’s type.
24 Returning an updated accumulated value is generally not the most memory-efficient approach as it requires at least two copies of an accumulated

value to be in memory at one time. The approach adopted by Phlex is to include a reference to the accumulated value as part of the fold operator’s
signature. The accumulator can then be updated in place, thus avoiding the extra copies of the data.

34 Chapter 3. Conceptual Design

Phlex, Release 0.3 (For Review)

3.5.5.5 Registration Interface

The fold(sum_energies) node in Fig. 3.1 would be represented in C++ as:

void sum_energy(double& total_hit_energy, hits const& hs) { ... }

PHLEX_REGISTER_ALGORITHMS(config)
{
products("TotalHitEnergy") =
fold(
"sum_hit_energy", // <= Node name for framework
sum_energy, // <= Fold operation
0., // <= Initializer for each fold result
"Spill", // <= Partition level (one fold result per Spill)
concurrency::unlimited // <= Allowed concurrency

)
.family("GoodHits"_in("APA"));

}

In order for the user-defined algorithm sum_energy algorithm to be safely executed concurrently, protections must be in
place to avoid data races when updating the total_hit_energy result object from multiple threads. Possible solutions
include using std::atomic_ref<double>25, placing a lock around the operation that updates total_hit_energy
(less desirable due to inefficiencies), or perhaps using std::atomic<double>26 instead of double to represent the
data product.

3.5.6 Partitioned Unfolds

Partitioned unfold Operators Output family length
𝑐 = unfold(𝑝, gen, label) 𝑑 𝑝 : 𝑁 → B |𝑐| ≥ |𝑑|

gen : 𝑁 → 𝑁 × 𝐶
label : 1 → 𝐿

As discussed in Section 2.5, the opposite of a fold is an unfold, where a family of objects is generated from a single
object. The example given in Section 2.6.1 is iota, which generates a sequence of contiguous integers given one input
number:

𝑐 = [1, 2, 3, . . . , 𝑛] = iota 𝑛 = unfold(𝑔𝑟𝑒𝑎𝑡𝑒𝑟_𝑡ℎ𝑎𝑛_𝑧𝑒𝑟𝑜, 𝑑𝑒𝑐𝑟𝑒𝑚𝑒𝑛𝑡) 𝑛

where iota has been expressed in terms of an unfold HOF that receives the predicate 𝑔𝑟𝑒𝑎𝑡𝑒𝑟_𝑡ℎ𝑎𝑛_𝑧𝑒𝑟𝑜 and a gener-
ator called 𝑑𝑒𝑐𝑟𝑒𝑚𝑒𝑛𝑡.

The unfold operation is repeatedly called until the predicate returns false, whereby it emits an empty list []:

𝑐 = unfold(𝑔𝑟𝑒𝑎𝑡𝑒𝑟_𝑡ℎ𝑎𝑛_𝑧𝑒𝑟𝑜, 𝑑𝑒𝑐𝑟𝑒𝑚𝑒𝑛𝑡) 𝑛

= unfold(𝑔𝑟𝑒𝑎𝑡𝑒𝑟_𝑡ℎ𝑎𝑛_𝑧𝑒𝑟𝑜, 𝑑𝑒𝑐𝑟𝑒𝑚𝑒𝑛𝑡) 𝑛− 1 + [𝑛]

...
= unfold(𝑔𝑟𝑒𝑎𝑡𝑒𝑟_𝑡ℎ𝑎𝑛_𝑧𝑒𝑟𝑜, 𝑑𝑒𝑐𝑟𝑒𝑚𝑒𝑛𝑡) 0 + [1, 2, . . . , 𝑛− 1, 𝑛]

= [] + [1, 2, . . . , 𝑛− 1, 𝑛]

where + in this example denotes an operator that concatenates two lists.

Heuristically, this can be thought of as executing the function:
25 https://en.cppreference.com/w/cpp/atomic/atomic_ref.html
26 https://en.cppreference.com/w/cpp/atomic/atomic.html

3.5. Supported Higher-Order Functions 35

https://en.cppreference.com/w/cpp/atomic/atomic_ref.html
https://en.cppreference.com/w/cpp/atomic/atomic.html

Phlex, Release 0.3 (For Review)

def unfold(predicate, generator, n):
result = []
next_value = n
while predicate(next_value):

generator returns a new value for next_value
next_value, family_element = generator(next_value)
result.prepend(family_element)

return result

where the user supplies the predicate (𝑝) and generator (gen) algorithms.

Phlex expands the concept of an unfold by allowing it to operate on a family of data products corresponding to a set
partition [DUNE 33]. This partitioned unfold is shown in Fig. 3.1, where the unfold(into_apas) node transforms a flat
family of SimDepos data products (each of which belong to a cell within the Spill partition) into a family of families,
with each nested family containing the Waveforms data products for all APAs within a given Spill.

Unfolding in this way can be used for parallelizing the processing of a data product in smaller chunks. Breaking up the
processing of a data product can also be an important ingredient in controlling the memory use of a Phlex program.

ò Note

Phlex requires the use of the label operator in unfolds to avoid collisions with already-existing data products and to
reflect the more granular data-processing that occurs as a result of the unfold.

3.5.6.1 Next Type

The signatures for the operators 𝑝 and gen have the curious type 𝑁 , which seems unrelated to the input family 𝑑, whose
elements are of type 𝐷, or the output family 𝑐, whose elements are of type 𝐶. The type 𝑁 refers to the type of the next
value on which the unfold operates. In the iota example above, the type 𝑁 is the same as the input argument 𝑛, which
is an integer, and it is the same as that of the output family elements, which are also integers.

The unfold in Fig. 3.1, however, demonstrates an example where 𝑁 is equal to neither 𝐷 nor 𝐶. Whereas the input type
𝐷 corresponds to the SimDepos data product in each Spill, the output type 𝐶 represents the Waveforms data products
produced for each APA. Assuming SimDepos is represented as a std::vector<SimDepo> object, a reasonable type for
𝑁 might be std::vector<SimDepo>::const_iterator, thus permitting the comparison of iterators in the predicate
𝑝 and using it in the generator gen for processing portions of the initial data product. The generator would thus return
a pair with an advanced iterator and a Waveforms object corresponding to one APA.

The choice of the next type 𝑁 thus depends on the use case and is not prescribed by Phlex.

3.5.6.2 Operator Signatures

Operator Allowed signature
𝑝 bool function_name(next_type) [quals];
gen std::pair<next_type, product_type> function_name(next_type, Rm...) [quals];
label Name of data layer of output data products

The unfold’s product_type must model the created data-product type described in Section 3.3.2. An unfold’s gen
algorithm may also create multiple data products by returning an object of type std::tuple<next_type, T1, ...,
Tn>, where each of the types T1, ..., Tn models a created data-product type.

36 Chapter 3. Conceptual Design

Phlex, Release 0.3 (For Review)

3.5.6.3 Registration Interface

As unfolds require coordination between the predicate 𝑝 and the generator gen, they are supported by implementing
classes with member functions that are registered with the framework.

For the unfold(to_apas) node in Fig. 3.1, the C++ code for the experiment algorithm would be:

class sim_depos { ... };
class waveforms { ... };

class to_apas {
using next_type = sim_depos::const_iterator;
next_type advance(next_type) { ... }
next_type end_;

public:
explicit to_apas(sim_depos const& sds) // Constructed with input data-product
: end_{sds.end()}

{}

bool keep_going(next_type next) const { return next != end_; }

std::pair<next_type, waveforms> make_waveforms(next_type next) const
{
// Create waveforms object 'ws' using 'next',
// ... and then move into result
return std::make_pair(advance(next), std::move(ws));

}
};

The definition of advance(...) would advance the next iterator according to some desired chunk size, or it would
return an end iterator when all elements of the "SimDepos" data product have been processed. The class is then
registered with Phlex via:

PHLEX_REGISTER_ALGORITHMS(config)
{
products("Waveforms") =
unfold<to_apas>(
"to_apas", // <= Node name for framework
&to_apas::keep_going, // <= Unfold predicate
&to_apas::make_waveforms, // <= Unfold generator
"APA", // <= Data layer for output data products
concurrency::unlimited // <= Allowed concurrency

)
.family("SimDepos"_in("Spill"));

}

Note that the template argument in unfold<to_apas> is an indication that the framework will create an object of type
to_apas each time it receives a "SimDepos" data product. The framework ensures that all data products remain in
memory for as long as they are required, and once they are no longer needed, they (as well as any unneeded to_apas
objects) are evicted from memory as soon as possible [DUNE 142].

3.5. Supported Higher-Order Functions 37

Phlex, Release 0.3 (For Review)

3.5.7 Windows

Window Operators Output family length
𝑦 = window(𝑓, 𝑎𝑑𝑗, 𝑙𝑎𝑏𝑒𝑙) 𝑥 𝑓 : 𝑋 × Opt(𝑋) → 𝑌 |𝑦| = |𝑥|

𝑎𝑑𝑗 : ℐ𝑥 × ℐ𝑥 → B
𝑙𝑎𝑏𝑒𝑙 : 1 → 𝐿

One of the unique capabilities of Phlex is to execute an algorithm on data products that belong to adjacent data cells
(see Section 3.4.1.2). The workflow in Fig. 3.1 shows a such a node window(make_tracks), which is presented with
pairs of GoodHits data products, with each data product in the pair belonging to adjacent APAs. It is the user-provided
𝑎𝑑𝑗 function which determines whether two data cells are adjacent.

For simplicity, imagine that each APA identifier (i.e. member of the set ℐAPA) can be represented as an integer. A
straightforward 𝑎𝑑𝑗 implementation might be to group the GoodHits data products from APAs with consecutive num-
bers:

[ℎ𝑠𝑖]𝑖∈ℐAPA
= [

𝑎 𝑐

ℎ𝑠1, ℎ𝑠2, ℎ𝑠3
𝑏

, ℎ𝑠4, . . . , ℎ𝑠𝑛−1, ℎ𝑠𝑛
𝑚

]

The data products corresponding to windows 𝑎 through 𝑚 are grouped into pairs and presented to an algorithm
𝑚𝑎𝑘𝑒_𝑡𝑟𝑎𝑐𝑘𝑠′, which has the signature Hits × Hits → Tracks. There are, at most, 𝑛 − 1 unique pairs that can be
presented to the function 𝑚𝑎𝑘𝑒_𝑡𝑟𝑎𝑐𝑘𝑠′ such that:

[𝑡𝑠𝑖]𝑖∈ℐ′
APA

= [𝑚𝑎𝑘𝑒_𝑡𝑟𝑎𝑐𝑘𝑠′(ℎ𝑠𝑖, ℎ𝑠𝑖+1)]𝑖∈ℐ′
APA

= window(𝑚𝑎𝑘𝑒_𝑡𝑟𝑎𝑐𝑘𝑠′, 𝑎𝑑𝑗, APA) [ℎ𝑠𝑖]𝑖∈ℐAPA

where the index set ℐ ′
APA is ℐAPA without the last identifier 𝑛27. In this example, the identifier of the first ℎ𝑠 object in

the pair is used to identify the tracks collection 𝑡𝑠. But Phlex does not mandate this choice, and a different data layer
could be specified by the 𝑙𝑎𝑏𝑒𝑙 operator for the data products of the output family.

3.5.7.1 Operator Signatures

One limitation of the above formulation is that index sets of the input and output families are not the same. To address
this infelicity, the function signature of 𝑚𝑎𝑘𝑒_𝑡𝑟𝑎𝑐𝑘𝑠′ can be adjusted such that the second argument receives an
optional type. We call this new algorithm 𝑚𝑎𝑘𝑒_𝑡𝑟𝑎𝑐𝑘𝑠:

𝑚𝑎𝑘𝑒_𝑡𝑟𝑎𝑐𝑘𝑠 : Hits × Opt(Hits) → Tracks

thus permitting symmetry between the input and output data-product families:

[𝑡𝑠𝑖]𝑖∈ℐAPA
= window(𝑚𝑎𝑘𝑒_𝑡𝑟𝑎𝑐𝑘𝑠, 𝑎𝑑𝑗, 𝑙𝑎𝑏𝑒𝑙) [ℎ𝑠𝑖]𝑖∈ℐAPA

= [𝑚𝑎𝑘𝑒_𝑡𝑟𝑎𝑐𝑘𝑠(ℎ𝑠𝑖, ℎ𝑠𝑖+1)]𝑖∈ℐ′
APA

+ [𝑚𝑎𝑘𝑒_𝑡𝑟𝑎𝑐𝑘𝑠(ℎ𝑠𝑛, ())]

where 𝑙𝑎𝑏𝑒𝑙 returns the value of APA, + is the list-concatenation operator, and () is the null value. Phlex supports the
function signature whose second argument is an optional type Opt(𝑋).

Operator Allowed signature
𝑓 return_type function_name(P1, Opt<P2>, Rm...) [quals];
𝑎𝑑𝑗 bool function_name(<P1 identifier>, <P2 identifier>) [quals];
𝑙𝑎𝑏𝑒𝑙 Name of data layer of output data products

The return_type must model the created data-product type described in Section 3.3.2. The algorithm 𝑓 may also
create multiple data products by returning a std::tuple<T1, ..., Tn> where each of the types T1, ..., Tn
models a created data-product type.

27 The expression 𝑓(ℎ𝑠𝑛, ℎ𝑠𝑛+1) is ill-formed as there are only 𝑛 elements in the set ℐAPA.

38 Chapter 3. Conceptual Design

Phlex, Release 0.3 (For Review)

The second argument Opt<P2> indicates that an optional type is passed to the algorithm. It is permitted to use resources
(i.e. Rm...) in the function 𝑓 . The data cell identifers of P1 and P2 are used to determine whether two data-products
reside in adjacent data cells.

3.5.7.2 Registration Interface

The window(make_tracks) node in Fig. 3.1 would be represented in C++ as:

class hits { ... };
class tracks { ... };
class id { ... };
tracks make_tracks(tracks const& ts, tracks const* next_ts) { ... }
bool are_adjacent(id const& left, id const& right) { ... }

PHLEX_REGISTER_ALGORITHMS(config)
{
products("GoodTracks") =
window(
"track_maker", // <= Node name for framework
make_tracks, // <= Window algorithm (f)
are_adjacent // <= Adjacency criterion
"APA", // <= Output data layer
concurrency::unlimited // <= Allowed concurrency

)
.family("GoodHits"_in("APA"));

}

Note that the second input parameter for make_tracks is an optional type. The type id is a metadata type (possibly
defined by the experiment) that enables the comparison of data-product identifiers for establishing adjacency.

3.6 Framework Driver
In imperative programming languages, control flow structures (such as loops) are provided by the language. Users
of the language are not able to create new control flow facilities. Previous frameworks contained framework-defined
event loops that provided the control flow for a framework program. Users of these frameworks were not able to create
alternate control flow structures.

In the functional programming paradigm, control flow is provided by higher-order functions. Users of such languages
are able to create new control flow structures by writing new higher-order functions. In Phlex, a framework driver is a
higher-order function that provides the control flow for a framework program. Phlex provides a variety of framework
drivers and also allows users to register their own drivers with the framework, to support different processing needs,
e.g. [DUNE 21] and [DUNE 40].

The workflow shown in Fig. 3.1 is driven by a driver(Spill) node that is configured to process all the Spills in the
specified HDF5 input files. The driver(Spill) communicates with the IO system to determine what Spills are available
for processing. All driver algorithms know about the single Job-level data cell that corresponds to the entirety of the
framework program execution (the job). The driver emits the single Job object, and a family of Spill objects, which
cause the provide algorithms to create their products, thus starting the data flow through the graph.

Other driver algorithms support different processing workflows. In one example workflow, a single Spill could be
reconstructed multiple times with different calibration objects used in the reconstruction, thus allowing a calibration
study for a single spill to be performed in one framework execution. In another example a different driver algorithm
could be used to drive the framework to process the Cartesian product of a set of Spills and a set of Calibration data
cells, to perform a different calibration study.

3.6. Framework Driver 39

Phlex, Release 0.3 (For Review)

3.7 Data-Product Providers
Providers communicate with the IO system through a specified API that is implemented by each IO back end. The IO
API provides the ability to read (and write) data to the IO system. Providers communicate with the IO system only
through this API. This allows the framework to support multiple IO back ends, including ROOT [DUNE 74] and HDF5
[DUNE 141], and ensure that new back ends can be added without modifying the framework code [DUNE 73].

Providers are responsible for being able to read data written by earlier code versions, subject to policy decisions made
by the experiment [DUNE 76].

Providers are also responsible for be able to read some types of data (such as calibration data, or geometry descriptions)
from sources other than files written by the IO system. The workflow shown in Fig. 3.1 shows an example of two such
provide algorithms. The first one is responsible for reading data Spills from the IO system, and the second one is
responsible for reading the data from GDML files.

3.8 Data-Product Writers
Writers write both (user-defined) data products and (framework- and user-defined) metadata to persistent output [DUNE
17]. Files written to by writers can be read using providers, through the same IO back end [DUNE 19]. The metadata
written by writers is sufficient to allow the reproduction of the processing that created the written data [DUNE 28].
This means that, for example, the full configuration of the framework executable is included in the written metdata.

Writers use the same IO API as providers, ensuring that the only communication with the IO system is through the IO
API. This allows the framework to support multiple IO back ends, including ROOT [DUNE 74] and HDF5 [DUNE
141], and ensure that new back ends can be added without modifying the framework code [DUNE 73]. The workflow
shown in Fig. 3.1 shows an example with the write algorithm writing data products to a ROOT back end.

3.9 Resources
As mentioned in Section 3.3, the typical form of a C++ function that can be registered with the framework is:

return_type function_name(P1, Pn..., Rm...) [quals];

where the types P1, Pn... represent data products, and the types Rm... represent resources.

ò Note

Phlex calls resources the objects that can be used by an algorithm to notify the framework that the algorithm requires
access to a shared entity that is not semantically related to the data-layer hierarchy. Note that in the requirements
that the word “resource” is sometimes used in a more general sense. In this section we are only referring to the
specific kind of resource described above.

An example registration of an algorithm that requires both a data product and a resource is found in Section 3.5.2.
The details of the registration code express to the framework which arguments correspond to data products and which
correspond to resources [DUNE 52]. They may be stateless objects (e.g. a resource that denotes that an algorithm
requires the use of a specific thread-unsafe library) or stateful objects (e.g. a resource that denotes access to a GPU, when
the platform on which the framework program is running contains several GPUs). Neither of these examples contain
mutable state. Resources (unlike data products) may have mutable state accessible to the algorithm (e.g. a histogram
instance that could be shared across multiple algorithms). For resources that are thread-unsafe, the framework ensures
that two algorithms are not interacting with the resource at the same time. The framework is responsible for efficiently
scheduling algorithms based, in part, upon the availability of resources [DUNE 50]. To facilitate efficient scheduling of
work, the resources needed by the program are specified via configuration or in the algorithm-registration code [DUNE

40 Chapter 3. Conceptual Design

Phlex, Release 0.3 (For Review)

47]28.

Examples of resources include:

• GPUs

• Network connections

• Thread-unsafe utilities

• Inference servers

• Database handles [DUNE 35], [DUNE 40]

Whereas data products have provenance associated with them, resources do not.

3.9.1 Limited Resources
Some resources are used to indicate that an algorithm requires sole use of some program entity. One example of such
an entity is a thread-unsafe library, where the framework must ensure that only one algorithm is interacting with that
library at any time [DUNE 45], [DUNE 145]. A second example of a limited resource is a fixed number of GPUs
present on a particular platform, where Phlex must ensure that each algorithm requiring the use of a GPU has sole
access to the GPU it is running on for the duration of the algorithm’s execution. A third example of a limited resource
could be an algorithm’s declaration that it requires spawning some number of threads for its execution (rather than using
the framework’s task-based execution model). Such an algorithm could declare the need for the reservation of some
number of threads by requiing that number of thread resources [DUNE 152]. The framework would then ensure that
only as many threads as the configuration has provided can be used by algoirthms at any one time. These resources are
called limited resources, because the framework is responsible for limiting the access to the resource to one algorithm
at a time.

An algorithm to be used by Phlex indicates that it requires a limited resource by requiring an argument that denotes
such a resource.

3.9.2 GPUs
In order to allow algorithms to make use of GPUs, and to allow the composition of workflows that involve both CPU-
based and GPU-based algorithms, Phlex provides a mechanism for an algorithm that requires access to a GPU to declare
that fact [DUNE 54]. This is done by making the algorithm accept a resource that denotes the GPU. Phlex can support
running on platforms that provide access to more than one GPU while ensuring that a given algorithm has sole access to
the GPU it requires while it is executing. Phlex also provides, through the same mechanism, the ability for an algorithm
to specify that it requires remote access to a GPU.

3.9.3 Random Number Resource
The generation of pseudorandom numbers (hereafter just random numbers) is a critical aspect of obtaining physics
results, especially when simulating data. Although multiple random-number generation techniques exists, the vast
majority of random-number implementations used in HEP rely on stateful random-number engines, which are subject
to data races in multi-threaded contexts. To ensure reproducible data and to ensure thread-safe access to stateful random-
number engines, HEP frameworks impose idiosyncratic constraints on their use.

DUNE has similar requirements on reproducibility of random numbers in a concurrent context [DUNE 36]. However,
instead of working around the limitations of stateful random-number engines, Phlex supports a random-number gener-
ation technique specifically designed to reproduce random-numbers in a concurrent program. Counter-based random
number generators (CBRNGs) [Wiki-CBRNG] provide such capabilities, and Phlex will provide an interface algorithm
authors can use to take advantage of them.

28 Details for specifying program resources are described in the technical design (under preparation).

3.9. Resources 41

Phlex, Release 0.3 (For Review)

3.9.4 User-defined Resources
While Phlex will provide some commonly-used types to represent resources, it will also be possible for users to create
new types to represent a new type of resouce, with no modifications to the Phlex framework code [DUNE 149]. Such
resource types have no dependency on Phlex, so that a user algorithm employing such a resource does not thereby incur
any dependency on the framework.

3.10 Program Configuration
As described in Section 3.1, a Phlex program starts by ingesting a configuration, which informs how the data-flow
graph (e.g. see Fig. 3.1) should be established.

To support reproducibility of data, a Phlex program is configured by only one configuration document [DUNE 69],
although that document may be compiled from multiple distinct sources [DUNE 133] (such as included or imported
files). These documents may be written in the following languages: Jsonnet, YAML, JSON (as a strict subset of
Jsonnet), or FHiCL [DUNE 72]. A given configuration can be written in any of these languages, but no configuration
document may be written in more than one language.

The other details and rules by which a Phlex program is configured largely do not inform the conceptual design and are
described in the technical design (under preparation).

42 Chapter 3. Conceptual Design

APPENDIX

A

DEFINITIONS

Algorithm
A user-defined function registered for execution by the framework.

Algorithms often serve as operators in a higher-order function.

APA
Anode Plane Assembly, a physical far-detector unit comprising thousands of wires as a planar slice.

Backward compatibility (persisted data)
The ability to construct the in-memory representation of data from persisted information derived from an earlier
in-memory representation of those data.

CHOF
See Configured higher-order function

Configured higher-order function
An entity created when registering an algorithm with the framework.

The registration includes the algorithm’s input/output data product requirements, the algorithm’s resource re-
quirements, and the higher-order function to which the algorithm serves as an operator.

Data cell
A grouping of data products that is identifiable by the framework29.

Each data cell has has a data layer label, which indicates the type of the data cell. All the data cells of a given
data layer are of the same type. All the data cells of a given data layer are identifiable by the same type of index,
and each is identified by a unique index value. In art, individual Run objects, Subrun objects and Event objects
are examples of data cells.

Data layer
A group of data cells each of which has the same data layer label.

A data layer is one node in a data-layer hierarchy. The top layer of the graph is always the Job. All other layers
are defined by the combination of the configuration of the framework job and the layers defined in the input data.
By contrast, in art the data layers are Run, Subrun, and Event.

Data product
An object managed by the framework and for which provenance information is recorded.

A data product is produced by an algorithm (or is recovered from storage by a provider) and can be passed as an
input to other algorithms. Data products determine the flow of execution of the graph of CHOFs configured in a
framework program.

Data-layer hierarchy
A hierarchy of data layers.

29 In earlier documentation, the term data product set was used for this concept.

43

Phlex, Release 0.3 (For Review)

A data-layer hierarchy is an acyclic graph of relationships of logical containment. The top layer of the hierarchy
is always the Job. All other layers in the hierarchy are defined by the combination of the configuration of the
framework job and the layers defined in the input data. In art, the data-layer hierarchy is Run-Subrun-Event.

Framework ecosystem
The ensemble of software delivered with the application framework.

Index set
A mathematical set that provides the indexes of an indexed family.

For the family 𝑎 = [𝑎1, 𝑎2, . . . , 𝑎𝑛] = [𝑎𝑖]𝑖∈ℐ , the index set ℐ is the set {1, 2, . . . , 𝑛}.

Indexed family
A collection of elements identified by an index from an index set.

The term family is often used as a shorthand for indexed family. In art there was no direct representation of
families. However, the sequence of Events processed by a given job is an example of a family of data cells. In a
single art module, the sequence of event data products looked up by the module across all events is an example
of a family of data products.

Metadata
Data that is ancillary to physics data.

Module
A compiled library that is dynamically loadable by the framework.

Provenance
A description of how the data were produced.

Examples include product parentage, job configuration, and library versions.

Reproducible
Identical inputs produce identical results.

Resource
A non-data software or hardware component managed by the program that can be used by algorithms.

Examples include:

• CPU cores

• CPU memory

• GPUs

• Network

• Thread-unsafe utilities

• Inference servers

• Databases

44 Appendix A. Definitions

APPENDIX

B

FRAMEWORK REQUIREMENTS

Requirements norm: Baseline 1 (created March 03, 2025)

s Important

All stakeholder requirements approved by DUNE are listed here for convenience. However, the requirements
recorded in the DUNE framework Jama Connect project are authoritative and take precedence over any uninten-
tional variations below.

B.1 Conceptual Requirements

Requirement: Algorithm Decomposability DUNE 1

status: Approved
tags: General, Original
jama: DUNE-DUNE_STKH-1;
notes: This is ID #01 from the original DUNE document.

The framework shall allow the execution of multiple algorithms.

• See Chapter 3

45

https://fnal-prod.jamacloud.com/perspective.req#/projects/63/dashboard/63
https://fnal-prod.jamacloud.com/perspective.req?projectId=63&docId=14536

Phlex, Release 0.3 (For Review)

Requirement: Data Product Representation DUNE 2

status: Approved
tags: Original, General, Accelerators
jama: DUNE-DUNE_STKH-2;
notes: This is ID #02 from the original DUNE document.

The framework shall separate the persistent representation of data products from their in-memory representations
as seen by algorithms.

• See Section 3.2.1.1

Requirement: Full utilization of DUNE computing resources DUNE 8

status: Approved
tags: General, Original, Reproducibility
jama: DUNE-DUNE_STKH-8;
notes: This is ID #05 from the original DUNE document.

The framework shall run on widely-used scientific computing systems in order to fully utilize DUNE computing
resources.

• See Section 1.2.2

Requirement: Algorithm hardware requirements DUNE 9

status: Approved
tags: General, Original, Reproducibility
jama: DUNE-DUNE_STKH-9;
notes: This is ID #06 from the original DUNE document.

The framework shall provide an API that allows users to express hardware requirements of the algorithms.

• See Section 3.4

46 Appendix B. Framework Requirements

https://fnal-prod.jamacloud.com/perspective.req?projectId=63&docId=14539
https://fnal-prod.jamacloud.com/perspective.req?projectId=63&docId=14548
https://fnal-prod.jamacloud.com/perspective.req?projectId=63&docId=14549

Phlex, Release 0.3 (For Review)

Requirement: Algorithms can use a GPU DUNE 11

status: Approved
tags: General, Accelerators, Reproducibility
jama: DUNE-DUNE_STKH-11;

The framework shall support running algorithms that require a GPU.

• See Section 1.2.2

Requirement: Support for multiple programming languages DUNE 14

status: Approved
tags: Original, General
jama: DUNE-DUNE_STKH-14;
notes: This is ID #07 from the original DUNE document. If DUNE decides that additional languages should be
supported in the future, a specific requirement can be added for that language as a sub-requirement.

The framework shall support the invocation of algorithms written in multiple programming languages.

• See Section 1.3

Requirement: Persist user-defined metadata DUNE 17

status: Approved
tags: General, Original
jama: DUNE-DUNE_STKH-17;
notes: This is ID #08 from the original DUNE document.

The framework shall provide user-accessible persistence of user-defined metadata.

• See Section 3.8

B.1. Conceptual Requirements 47

https://fnal-prod.jamacloud.com/perspective.req?projectId=63&docId=14551
https://fnal-prod.jamacloud.com/perspective.req?projectId=63&docId=14554
https://fnal-prod.jamacloud.com/perspective.req?projectId=63&docId=14557

Phlex, Release 0.3 (For Review)

Requirement: Framework shall read its own output files DUNE 19

status: Approved
tags: Physics Analysis, Original
jama: DUNE-DUNE_STKH-19;
notes: This is ID #10 from the original DUNE document.

The framework shall provide the ability to read a framework-produced file as input to a subsequent framework job
so that the physics data are equivalent to the physics data obtained from a single execution of the combined job.

• See Section 3.8

Requirement: Presenting data to subsequent algorithms DUNE 20

status: Approved
tags: Physics Analysis
jama: DUNE-DUNE_STKH-20;

The framework shall present data produced by an already executed algorithm to each subsequent, requesting algo-
rithm.

• See Section 3.1, Section 3.2.1

Requirement: Mix input streams DUNE 21

status: Approved
tags: Physics Analysis, Original
jama: DUNE-DUNE_STKH-21;
notes: This is ID #11 from the original DUNE document. This document uses "data cells" rather than "data sets".

The framework shall support the creation of data sets composed of data products derived from data originating from
disparate input sources.

• See Section 3.6.

48 Appendix B. Framework Requirements

https://fnal-prod.jamacloud.com/perspective.req?projectId=63&docId=14560
https://fnal-prod.jamacloud.com/perspective.req?projectId=63&docId=14562
https://fnal-prod.jamacloud.com/perspective.req?projectId=63&docId=14563

Phlex, Release 0.3 (For Review)

Requirement: Flexible data units DUNE 22

status: Approved
tags: Original, Flexible Processing Unit (FPU)
jama: DUNE-DUNE_STKH-22;
notes: This is ID #12 from the original DUNE document.

The framework shall support flexibly defined, context-aware processing units to address the varying granularity
necessary for processing different kinds of data.

• See Section 1.1, Section 1.2.1

Requirement: Process collections of unconstrained size DUNE 25

status: Approved
tags: Original, Flexible Processing Unit (FPU)
jama: DUNE-DUNE_STKH-25;
notes: This originates from ID #16 from the original DUNE document.

The framework shall support processing of collections that are too large to fit into memory at one time.

• See Section 3.2.2

Requirement: Framework recording of metadata for reproduction of output data DUNE 28

status: Approved
tags: Original, Reproducibility, Provenance
jama: DUNE-DUNE_STKH-28;
notes: This is ID #18 from the original DUNE document.

The framework shall record metadata to output enabling the reproduction of the processing steps used to produce
the data recorded in that output.

• See Section 3.8

B.1. Conceptual Requirements 49

https://fnal-prod.jamacloud.com/perspective.req?projectId=63&docId=14580
https://fnal-prod.jamacloud.com/perspective.req?projectId=63&docId=14584
https://fnal-prod.jamacloud.com/perspective.req?projectId=63&docId=14588

Phlex, Release 0.3 (For Review)

Requirement: Unfolding data products DUNE 33

status: Approved
tags: Memory management, Original, Flexible Processing Unit (FPU)
jama: DUNE-DUNE_STKH-33;
notes: This is ID #58 from the original DUNE document.

The framework shall allow the unfolding of data products into a sequence of finer-grained data products.

• See Section 3.5.6

Requirement: Access to external data sources DUNE 35

status: Approved
tags: Original, Services
jama: DUNE-DUNE_STKH-35;
notes: This is ID #47 from the original DUNE document. By "external data sources," we mean "data sources
other than framework-readable data files containing detector readout or simulated physics data."

The framework shall support access to external data sources.

• See Section 3.4.1.1, Section 3.9

Requirement: Reproducibility with pseudo-random numbers DUNE 36

status: Approved
tags: Original, Reproducibility, Provenance
jama: DUNE-DUNE_STKH-36;
notes: This is ID #22 from the original DUNE document.

The framework shall provide a facility to produce random numbers enabling algorithms to create reproducible data
in concurrent contexts.

• See Section 3.1, Section 3.2.1, Section 3.4

50 Appendix B. Framework Requirements

https://fnal-prod.jamacloud.com/perspective.req?projectId=63&docId=14593
https://fnal-prod.jamacloud.com/perspective.req?projectId=63&docId=14595
https://fnal-prod.jamacloud.com/perspective.req?projectId=63&docId=14596

Phlex, Release 0.3 (For Review)

Requirement: Calibration database algorithms DUNE 40

status: Approved
tags: Services
jama: DUNE-DUNE_STKH-40;
notes: This is ID #68 as proposed to DUNE.

The framework shall support algorithms that provide data from calibration databases.

• See Section 3.2, Section 3.6, Section 3.9.

Requirement: Algorithms independent of framework interface DUNE 43

status: Approved
tags: Services, Original
jama: DUNE-DUNE_STKH-43;
notes: This is ID #48 from the original DUNE document.

The framework shall support the registration of algorithms that are independent of framework interface.

• See Section 1.2.3, Section 1.4, Section 3.2.2, Section 3.3

Requirement: Safely executing thread-safe and non-thread-safe algorithms DUNE 45

status: Approved
tags: Original, Concurrency and multithreading
jama: DUNE-DUNE_STKH-45;
notes: This is ID #26 from the original DUNE document.

The framework shall safely execute user algorithms declared to be non-thread-safe along with those declared to be
thread-safe.

• See Section 3.9.1

B.1. Conceptual Requirements 51

https://fnal-prod.jamacloud.com/perspective.req?projectId=63&docId=14600
https://fnal-prod.jamacloud.com/perspective.req?projectId=63&docId=14608
https://fnal-prod.jamacloud.com/perspective.req?projectId=63&docId=14611

Phlex, Release 0.3 (For Review)

Requirement: Resource specification for the program DUNE 47

status: Approved
tags: Original, Concurrency and multithreading, Resource management
jama: DUNE-DUNE_STKH-47;
notes: This is ID #28 from the original DUNE document.

The framework shall enable the specification of resources required by the program.

• See Section 3.9

Requirement: Resource-based algorithm concurrency DUNE 50

status: Approved
tags: Original, Concurrency and multithreading, Resource management
jama: DUNE-DUNE_STKH-50;
notes: This is ID #31 from the original DUNE document.

The framework shall dynamically schedule algorithms to execute efficiently according to the availability of each
algorithm’s required resources.

• See Section 3.9

Requirement: Resource specification for algorithms DUNE 52

status: Approved
tags: Original, Concurrency and multithreading, Resource management
jama: DUNE-DUNE_STKH-52;
notes: This is ID #33 from the original DUNE document.

The framework shall enable the specification of resources required by each algorithm.

• See Section 3.9

52 Appendix B. Framework Requirements

https://fnal-prod.jamacloud.com/perspective.req?projectId=63&docId=14613
https://fnal-prod.jamacloud.com/perspective.req?projectId=63&docId=14618
https://fnal-prod.jamacloud.com/perspective.req?projectId=63&docId=14620

Phlex, Release 0.3 (For Review)

Requirement: Composable workflows using GPU algorithms and CPU algorithms DUNE 54

status: Approved
tags: Original, Concurrency and multithreading, Resource management
jama: DUNE-DUNE_STKH-54;
notes: This is ID #36 from the original DUNE document.

The framework shall support composable workflows that use GPU algorithms along with CPU algorithms.

• See Section 3.9.2

Requirement: Specification of data products required by an algorithm DUNE 65

status: Approved
tags: Registration
jama: DUNE-DUNE_STKH-65;
notes: This is ID #63 as proposed to DUNE.

The framework shall support the specification of data products required as input by an algorithm.

• See Section 3.1, Section 3.4

Requirement: One configuration per framework execution DUNE 69

status: Approved
tags: Original, Configuration
jama: DUNE-DUNE_STKH-69;
notes: This is ID #44 from the original DUNE document.

The framework shall accept exactly one configuration per program execution.

• See Section 3.10

B.1. Conceptual Requirements 53

https://fnal-prod.jamacloud.com/perspective.req?projectId=63&docId=14622
https://fnal-prod.jamacloud.com/perspective.req?projectId=63&docId=14634
https://fnal-prod.jamacloud.com/perspective.req?projectId=63&docId=14638

Phlex, Release 0.3 (For Review)

Requirement: Framework configuration language DUNE 72

status: Approved
tags: Configuration
jama: DUNE-DUNE_STKH-72;
notes: This is ID #60 as proposed to DUNE.

The framework shall provide the ability to configure the execution of a framework program at runtime using a
human-readable language.

• See Section 3.10

Requirement: I/O plugins DUNE 73

status: Approved
tags: Data I/O layer, Original
jama: DUNE-DUNE_STKH-73;
notes: This is ID #50 from the original DUNE document. Data includes physics data and metadata (both
user-provided and framework metadata). The goal is to enable non-framework developers to implement an IO
backend without needing to modify the framework itself.

The framework shall provide a public API that enables the implementation of a concrete IO backend for a specific
persistent storage format.

• See Section 3.7, Section 3.8

Requirement: Data I/O backward compatibility DUNE 76

status: Approved
tags: Original, Data I/O layer, Backwards compatibility
jama: DUNE-DUNE_STKH-76;
notes: This is ID #54 from the original DUNE document. Backward compatibility means that new code is able to
read data produced by older versions of the framework.

The framework IO subsystem shall support backward compatibility across versions, subject to policy decisions on
deprecation provided by DUNE.

54 Appendix B. Framework Requirements

https://fnal-prod.jamacloud.com/perspective.req?projectId=63&docId=14641
https://fnal-prod.jamacloud.com/perspective.req?projectId=63&docId=14642
https://fnal-prod.jamacloud.com/perspective.req?projectId=63&docId=14645

Phlex, Release 0.3 (For Review)

• See Section 3.7

Requirement: Support C++ algorithms DUNE 81

status: Approved
tags: General
jama: DUNE-DUNE_STKH-81;

The framework shall support the invocation of algorithms written in C++.

• See Section 1.3

Requirement: Support Python algorithms DUNE 82

status: Approved
tags: General
jama: DUNE-DUNE_STKH-82;

The framework shall support the invocation of algorithms written in Python.

• See Section 1.3

Requirement: Definition of data products DUNE 85

status: Approved
tags: Flexible Processing Unit (FPU)
jama: DUNE-DUNE_STKH-85;

The framework shall provide the ability for user-level code to define data products.

• See Section 3.2, Section 3.2.1.2, Section 3.2.2

B.1. Conceptual Requirements 55

https://fnal-prod.jamacloud.com/perspective.req?projectId=63&docId=14663
https://fnal-prod.jamacloud.com/perspective.req?projectId=63&docId=14664
https://fnal-prod.jamacloud.com/perspective.req?projectId=63&docId=14693

Phlex, Release 0.3 (For Review)

Requirement: Creation of data sets DUNE 86

status: Approved
tags: Flexible Processing Unit (FPU)
jama: DUNE-DUNE_STKH-86;
notes: This document uses "data cells" rather than "data sets".

The framework shall provide the ability for user-level code to create new data sets.

• See Section 3.2, Section 3.2.2

Requirement: Definition of data families DUNE 87

status: Approved
tags: Flexible Processing Unit (FPU)
jama: DUNE-DUNE_STKH-87;
notes: This document uses "data layers" rather than (this use) of "data families".

The framework shall provide the ability for user-level code to define data families.

• See Section 3.2, Section 3.2.2

Requirement: Definition of data family hierarchies DUNE 88

status: Approved
tags: Flexible Processing Unit (FPU)
jama: DUNE-DUNE_STKH-88;
notes: This document uses "data-layer hierarchies" rather than "data-family hierarchies".

The framework shall provide the ability for user-level code to define hierarchies of data families.

• See Section 3.2, Section 3.2.2

56 Appendix B. Framework Requirements

https://fnal-prod.jamacloud.com/perspective.req?projectId=63&docId=14696
https://fnal-prod.jamacloud.com/perspective.req?projectId=63&docId=14697
https://fnal-prod.jamacloud.com/perspective.req?projectId=63&docId=14698

Phlex, Release 0.3 (For Review)

Requirement: Algorithm invocation with data products from multiple data sets DUNE 89

status: Approved
tags: Flexible Processing Unit (FPU)
jama: DUNE-DUNE_STKH-89;
notes: This document uses "data cells" rather than "data sets".

The framework shall allow a single invocation of an algorithm with data products from multiple data sets.

• See Section 3.4.1

Requirement: Specification of algorithm output FPUs DUNE 90

status: Approved
tags: Flexible Processing Unit (FPU)
jama: DUNE-DUNE_STKH-90;
notes: To implement this requirement, the algorithm should not know where its created data products are
going--that is something that will be specified at the plugin level (perhaps by configuration). This document uses
"data layer" rather than (this use) of "data family".

The framework shall support the user specification of which data family to place the data products created by an
algorithm.

• See Section 3.4

Requirement: Algorithm invocation with data products from adjacent data sets DUNE 91

status: Approved
tags: Flexible Processing Unit (FPU)
jama: DUNE-DUNE_STKH-91;
notes: This document uses "data cells" rather than "data sets".

The framework shall support the invocation of an algorithm with data products belonging to adjacent data sets.

• See Section 3.4.1.2

B.1. Conceptual Requirements 57

https://fnal-prod.jamacloud.com/perspective.req?projectId=63&docId=14705
https://fnal-prod.jamacloud.com/perspective.req?projectId=63&docId=14706
https://fnal-prod.jamacloud.com/perspective.req?projectId=63&docId=14713

Phlex, Release 0.3 (For Review)

Requirement: User-defined adjacency DUNE 92

status: Approved
tags: Flexible Processing Unit (FPU)
jama: DUNE-DUNE_STKH-92;
notes: This document uses "data cells" rather than "data sets".

The framework shall support user code that defines adjacency of data sets within a data family.

• See Section 3.4.1.2

Requirement: Algorithm-Data Separability DUNE 110

status: Approved
tags: General
jama: DUNE-DUNE_STKH-110;

The data objects exchanged among algorithms shall be separable from those algorithms.

• See Section 3.9.3

Requirement: Algorithm Communication Via Data Products DUNE 111

status: Approved
tags: General, Reproducibility, Provenance
jama: DUNE-DUNE_STKH-111;

The framework shall mediate communication between algorithms via data products.

• See Section 3.2.1

58 Appendix B. Framework Requirements

https://fnal-prod.jamacloud.com/perspective.req?projectId=63&docId=14714
https://fnal-prod.jamacloud.com/perspective.req?projectId=63&docId=14845
https://fnal-prod.jamacloud.com/perspective.req?projectId=63&docId=14847

Phlex, Release 0.3 (For Review)

Requirement: Algorithm invocation with data products from multiple data families DUNE 113

status: Approved
tags: Flexible Processing Unit (FPU)
jama: DUNE-DUNE_STKH-113;
notes: This document uses "data layers" rather than (this use) of "data families".

The framework shall allow a single invocation of an algorithm with data products from multiple data families.

• See Section 3.4.1.1

Requirement: Provenance discovery DUNE 121

status: Approved
tags: Provenance
jama: DUNE-DUNE_STKH-121;

The framework shall enable users to discover the provenance of data products.

• See Section 1.2, Section 3.2.1, Section 3.2.3, Section 3.2.4.

Requirement: Reproducibility of data products DUNE 122

status: Approved
tags: Reproducibility, Provenance
jama: DUNE-DUNE_STKH-122;

The framework shall support the reproduction of data products from the provenance stored in the output.

• See Section 3.2.4.

B.1. Conceptual Requirements 59

https://fnal-prod.jamacloud.com/perspective.req?projectId=63&docId=14937
https://fnal-prod.jamacloud.com/perspective.req?projectId=63&docId=15293
https://fnal-prod.jamacloud.com/perspective.req?projectId=63&docId=15294

Phlex, Release 0.3 (For Review)

Requirement: Thread-safe design for algorithms DUNE 130

status: Approved
tags: Concurrency and multithreading
jama: DUNE-DUNE_STKH-130;

The framework shall facilitate the development of thread-safe algorithms.

• See Section 2.4, Section 3.2.3

Requirement: Composing configurations of framework components DUNE 133

status: Approved
tags: Configuration
jama: DUNE-DUNE_STKH-133;

The framework shall support executing programs configured by composing configurations of separate components.

• See the technical design (under preparation)

Requirement: Graceful shutdown of framework program DUNE 134

status: Approved
tags: Error handling
jama: DUNE-DUNE_STKH-134;
notes: A graceful shutdown refers to a framework program that completes the processing of all in-flight data,
safely closes all open input and output files, cleans up connections to external entities (e.g. databases), etc. before
the program ends. This ensures that no resources are left in ill-defined states and that all output files are readable
and valid. An important example of this is when a batch job exceeds a time limit and the grid system sends a signal
to shutdown the job, which should end gracefully.

The framework shall attempt a graceful shutdown by default.

• See Section 1.2.3

60 Appendix B. Framework Requirements

https://fnal-prod.jamacloud.com/perspective.req?projectId=63&docId=15742
https://fnal-prod.jamacloud.com/perspective.req?projectId=63&docId=15775
https://fnal-prod.jamacloud.com/perspective.req?projectId=63&docId=15787

Phlex, Release 0.3 (For Review)

Requirement: Optimize memory management for data products DUNE 142

status: Approved
tags: Resource management
jama: DUNE-DUNE_STKH-142;
notes: Optimization means making the data products available for the shortest period of time possible for all
algorithms that require them. The framework, however, may need to run in series multiple algorithms requiring
those data products if those algorithms would run out of resources if run concurrently.

The framework shall optimize the memory management of data products.

• See Section 3.2.3, Section 3.5.6.3

Requirement: Serial access to a thread-unsafe resource DUNE 145

status: Approved
tags: Concurrency and multithreading, Original, Resource management
jama: DUNE-DUNE_STKH-145;

The framework shall permit algorithm authors to specify that the algorithm requires serial access to a thread-unsafe
resource.

• See Section 3.9.1

Requirement: Specification of user-defined resources DUNE 149

status: Approved
tags: Resource management
jama: DUNE-DUNE_STKH-149;

The framework shall enable the specification of user-defined resources required by the program.

• See Section 3.9.4

B.1. Conceptual Requirements 61

https://fnal-prod.jamacloud.com/perspective.req?projectId=63&docId=15847
https://fnal-prod.jamacloud.com/perspective.req?projectId=63&docId=15856
https://fnal-prod.jamacloud.com/perspective.req?projectId=63&docId=15871

Phlex, Release 0.3 (For Review)

Requirement: Specification of algorithm's user-defined resources DUNE 155

status: Approved
tags: Resource management
jama: DUNE-DUNE_STKH-155;

The framework shall enable the specification of user-defined resources required by the algorithm.

• See Section 3.9.4

Requirement: Specification of data products created by an algorithm DUNE 156

status: Approved
tags: Registration
jama: DUNE-DUNE_STKH-156;

The framework shall support the specification of data products created as output by an algorithm.

• See Section 3.1, Section 3.4

B.2 Supporting Requirements

Requirement: Shut down upon unmet algorithm hardware requirements DUNE 13

status: Approved
tags: General
jama: DUNE-DUNE_STKH-13;

The framework shall shut down if the platform fails to meet each specified hardware requirement.

62 Appendix B. Framework Requirements

https://fnal-prod.jamacloud.com/perspective.req?projectId=63&docId=15891
https://fnal-prod.jamacloud.com/perspective.req?projectId=63&docId=15897
https://fnal-prod.jamacloud.com/perspective.req?projectId=63&docId=14553

Phlex, Release 0.3 (For Review)

Requirement: Provide instructions for writing algorithms in supported languages DUNE 16

status: Approved
tags: Documentation
jama: DUNE-DUNE_STKH-16;

The framework documentation shall provide instructions for writing framework-executable algorithms in supported
languages.

Requirement: Data product I/O independence DUNE 24

status: Approved
tags: Original, Data I/O layer
jama: DUNE-DUNE_STKH-24;
notes: This is ID #14 from the original DUNE document.

The framework shall support reading from disk only the data products required by a given algorithm.

Requirement: Framework configuration persistency DUNE 27

status: Approved
tags: Original, Configuration, Reproducibility, Provenance
jama: DUNE-DUNE_STKH-27;
notes: This is ID #17 from the original DUNE document. This requirement is in support of documenting and
reproducing previous results.

The framework shall provide an option to persist the configuration of each framework execution to the output of that
execution.

• See the technical design (under preparation)

B.2. Supporting Requirements 63

https://fnal-prod.jamacloud.com/perspective.req?projectId=63&docId=14556
https://fnal-prod.jamacloud.com/perspective.req?projectId=63&docId=14583
https://fnal-prod.jamacloud.com/perspective.req?projectId=63&docId=14587

Phlex, Release 0.3 (For Review)

Requirement: Record execution environment DUNE 30

status: Approved
tags: Original, Reproducibility, Provenance
jama: DUNE-DUNE_STKH-30;
notes: This is ID #20 from the original DUNE document.

The framework shall record the job’s execution environment.

Requirement: Maximum memory usage DUNE 31

status: Approved
tags: Original, Memory management, Resource management
jama: DUNE-DUNE_STKH-31;
notes: This is ID #59 from the original DUNE document. The maximum memory available is a static quantity that
can apply to (a) a job using an entire node with all of its available RSS, and (b) a job using a specific grid slot with
a limit on the RSS. It is assumed that the operating system and C++/Python runtimes are not already enforcing this
limit.

The framework shall gracefully shut down if the program attempts to exceed a configured memory limit.

Requirement: Local GPU algorithm support DUNE 41

status: Approved
tags: Services
jama: DUNE-DUNE_STKH-41;
notes: This is ID #69 as proposed to DUNE.

The framework shall support algorithms that perform calculations using a local GPU.

64 Appendix B. Framework Requirements

https://fnal-prod.jamacloud.com/perspective.req?projectId=63&docId=14590
https://fnal-prod.jamacloud.com/perspective.req?projectId=63&docId=14591
https://fnal-prod.jamacloud.com/perspective.req?projectId=63&docId=14602

Phlex, Release 0.3 (For Review)

Requirement: Remote GPU algorithm support DUNE 42

status: Approved
tags: Services
jama: DUNE-DUNE_STKH-42;
notes: This is ID #70 as proposed to DUNE.

The framework shall support algorithms that perform calculations using a remote GPU.

Requirement: Intra-algorithm concurrency and multi-threading DUNE 46

status: Approved
tags: Original, Concurrency and multithreading
jama: DUNE-DUNE_STKH-46;
notes: This is ID #27 from the original DUNE document. It is the responsibility of the algorithm author to ensure
that any parallelism libraries used can work compatibly with those used by the framework itself.

The framework shall allow algorithms to use the same parallelism mechanisms the framework uses to schedule the
execution of algorithms.

• See the technical design (under preparation)

Requirement: Logging resource usage per algorithm invocation DUNE 48

status: Approved
tags: Original, Concurrency and multithreading, Resource management
jama: DUNE-DUNE_STKH-48;
notes: This is ID #29 from the original DUNE document.

The framework shall support logging the usage of a specified resource for each algorithm using the resource.

B.2. Supporting Requirements 65

https://fnal-prod.jamacloud.com/perspective.req?projectId=63&docId=14607
https://fnal-prod.jamacloud.com/perspective.req?projectId=63&docId=14612
https://fnal-prod.jamacloud.com/perspective.req?projectId=63&docId=14614

Phlex, Release 0.3 (For Review)

Requirement: Emit message stating algorithm resource requirements DUNE 56

status: Approved
tags: Original, Concurrency and multithreading, Resource management
jama: DUNE-DUNE_STKH-56;
notes: This is ID #38 from the original DUNE document.

The framework shall have an option to emit a message stating the resources required by each algorithm of a config-
ured program without executing the workflow.

Requirement: Monitoring global memory use DUNE 59

status: Approved
tags: General, Memory management, Resource management
jama: DUNE-DUNE_STKH-59;
notes: This is ID #67 as proposed to DUNE.

The framework shall be able to report the global memory use of the framework program at user-specified points in
time.

• See the technical design (under preparation)

Requirement: Elapsed time information DUNE 60

status: Approved
tags: General, Resource management
jama: DUNE-DUNE_STKH-60;
notes: This is ID #66 as proposed to DUNE. This option is intended to capture wall-clock time and not CPU time.
If more granular reporting of CPU vs. IO time is required, dedicated profiling tools like VTune or Linaro Forge
should be used.

The framework shall have an option to provide elapsed time information for each algorithm executed in a framework
program.

• See the technical design (under preparation)

66 Appendix B. Framework Requirements

https://fnal-prod.jamacloud.com/perspective.req?projectId=63&docId=14625
https://fnal-prod.jamacloud.com/perspective.req?projectId=63&docId=14628
https://fnal-prod.jamacloud.com/perspective.req?projectId=63&docId=14629

Phlex, Release 0.3 (For Review)

Requirement: Framework-independent message logging DUNE 61

status: Approved
tags: General
jama: DUNE-DUNE_STKH-61;
notes: This is ID #65 as proposed to DUNE.

The framework shall support a logging solution that is usable in an algorithm without that algorithm explicitly
relying on the framework.

• See the technical design (under preparation)

Requirement: Independence from unique hardware characteristics DUNE 63

status: Approved
tags: Reproducibility, Provenance
jama: DUNE-DUNE_STKH-63;
notes: This is ID #62 as proposed to DUNE.

The framework shall operate independently of unique characteristics of existing hardware.

• See Section 1.2.2, Section 3.2.1

Requirement: Configuration validation DUNE 64

status: Approved
tags: Original, Configuration
jama: DUNE-DUNE_STKH-64;
notes: This is ID #42 from the original DUNE document.

The framework shall validate an algorithm’s configuration against specifications provided at registration time.

• See the technical design (under preparation)

B.2. Supporting Requirements 67

https://fnal-prod.jamacloud.com/perspective.req?projectId=63&docId=14630
https://fnal-prod.jamacloud.com/perspective.req?projectId=63&docId=14632
https://fnal-prod.jamacloud.com/perspective.req?projectId=63&docId=14633

Phlex, Release 0.3 (For Review)

Requirement: Algorithm configuration schema availability DUNE 67

status: Approved
tags: Original, Configuration
jama: DUNE-DUNE_STKH-67;
notes: This is ID #43 from the original DUNE document.

The framework shall have an option to emit an algorithm’s configuration schema in human-readable form.

• See the technical design (under preparation)

Requirement: Emit message describing data flow of program DUNE 68

status: Approved
tags: Concurrency and multithreading
jama: DUNE-DUNE_STKH-68;
notes: This is ID #64 as proposed to DUNE.

The framework shall have an option to emit a description of the data flow of a configured program without executing
the workflow.

Requirement: Eager validation of algorithm configuration DUNE 70

status: Approved
tags: Original, Configuration
jama: DUNE-DUNE_STKH-70;
notes: This is ID #45 from the original DUNE document. Validation includes any reading, parsing,
canonicalizing, and checking against applicable schemata.

The framework shall validate the configuration of each algorithm before that algorithm processes data.

• See the technical design (under preparation), the technical design (under preparation).

68 Appendix B. Framework Requirements

https://fnal-prod.jamacloud.com/perspective.req?projectId=63&docId=14636
https://fnal-prod.jamacloud.com/perspective.req?projectId=63&docId=14637
https://fnal-prod.jamacloud.com/perspective.req?projectId=63&docId=14639

Phlex, Release 0.3 (For Review)

Requirement: I/O backend for ROOT DUNE 74

status: Approved
tags: Data I/O layer, Original
jama: DUNE-DUNE_STKH-74;
notes: This is ID #51 from the original DUNE document.

The framework ecosystem shall support a ROOT IO backend.

• See Section 3.2.1.

Requirement: Configurable data compression DUNE 77

status: Approved
tags: Original, Data I/O layer
jama: DUNE-DUNE_STKH-77;
notes: This is ID #55 from the original DUNE document.

The framework IO subsystem shall allow user-configuration of compression settings for each concrete IO imple-
mentation.

Requirement: User-configurable output file rollover DUNE 78

status: Approved
tags: Original, Data I/O layer
jama: DUNE-DUNE_STKH-78;
notes: This is ID #56 from the original DUNE document.

The framework shall support user-configurable rollover of output files.

B.2. Supporting Requirements 69

https://fnal-prod.jamacloud.com/perspective.req?projectId=63&docId=14643
https://fnal-prod.jamacloud.com/perspective.req?projectId=63&docId=14646
https://fnal-prod.jamacloud.com/perspective.req?projectId=63&docId=14647

Phlex, Release 0.3 (For Review)

Requirement: Configuration comparison DUNE 98

status: Approved
tags: Configuration
jama: DUNE-DUNE_STKH-98;

The framework shall provide the ability to compare two configurations.

• See the technical design (under preparation)

Requirement: User-selectable list of recordable execution environment components DUNE 100

status: Approved
tags: Reproducibility, Provenance
jama: DUNE-DUNE_STKH-100;

The framework shall provide the list of recordable components of the execution environment.

Requirement: Save user-selected execution environment components DUNE 101

status: Approved
tags: Reproducibility, Provenance
jama: DUNE-DUNE_STKH-101;

The framework shall save each execution-environment description selected by the user from the framework-
provided-list.

70 Appendix B. Framework Requirements

https://fnal-prod.jamacloud.com/perspective.req?projectId=63&docId=14724
https://fnal-prod.jamacloud.com/perspective.req?projectId=63&docId=14730
https://fnal-prod.jamacloud.com/perspective.req?projectId=63&docId=14731

Phlex, Release 0.3 (For Review)

Requirement: Data product backward compatibility DUNE 106

status: Approved
tags: Data I/O layer, Backwards compatibility
jama: DUNE-DUNE_STKH-106;

The framework’s IO subsystem shall support backward compatibility of data products.

Requirement: Metadata backward compatibility DUNE 107

status: Approved
tags: Data I/O layer, Backwards compatibility
jama: DUNE-DUNE_STKH-107;
notes: Metadata here can include user-visible (including user-provided) metadata, and framework metadata, which
may not be user-visible but is necessary for framework operation.

The framework’s IO subsystem shall support backward compatibility of metadata.

Requirement: Output file rollover due to number of data sets in data family DUNE 109

status: Approved
tags: Data I/O layer
jama: DUNE-DUNE_STKH-109;
notes: Some examples include limiting the output file to contain data for: (a) 1 subrun ("subrun" is the
user-specified family) (b) 100 spills ("spill" is the user-specified family) (c) 10 blobs ("blob" is the user-specified
family) This document uses "data cells" rather than "data sets", and "data layer" rather than (this use) of "data
family".

The framework shall have an option to rollover output files according to a configurable limit on the number of data
sets in a user-specified data family.

B.2. Supporting Requirements 71

https://fnal-prod.jamacloud.com/perspective.req?projectId=63&docId=14796
https://fnal-prod.jamacloud.com/perspective.req?projectId=63&docId=14797
https://fnal-prod.jamacloud.com/perspective.req?projectId=63&docId=14806

Phlex, Release 0.3 (For Review)

Requirement: Emit diagnostic upon unmet algorithm hardware requirements DUNE 112

status: Approved
tags: General
jama: DUNE-DUNE_STKH-112;

The framework shall emit a diagnostic message for each hardware requirement the platform fails to meet.

Requirement: ProtoDUNE single-phase raw data DUNE 116

status: Deferred
tags: Backwards compatibility, Data I/O layer
jama: DUNE-DUNE_STKH-116;
notes: ProtoDUNE single-phase was used in run 1. For this requirement, the framework *ecosystem* is
responsible for processing run 1 data (e.g. the framework might not read the run 1 data directly, but a translation
program might first prepare the run 1 data for reading within the framework).

The framework ecosystem shall support processing ProtoDUNE single-phase raw data.

Requirement: ProtoDUNE dual-phase raw data DUNE 117

status: Deferred
tags: Backwards compatibility, Data I/O layer
jama: DUNE-DUNE_STKH-117;
notes: ProtoDUNE dual-phase was used in run 1. For this requirement, the framework *ecosystem* is responsible
for processing run 1 data (e.g. the framework might not read the run 1 data directly, but a translation program
might first prepare the run 1 data for reading within the framework).

The framework ecosystem shall support processing ProtoDUNE dual-phase raw data.

72 Appendix B. Framework Requirements

https://fnal-prod.jamacloud.com/perspective.req?projectId=63&docId=14885
https://fnal-prod.jamacloud.com/perspective.req?projectId=63&docId=15239
https://fnal-prod.jamacloud.com/perspective.req?projectId=63&docId=15240

Phlex, Release 0.3 (For Review)

Requirement: ProtoDUNE II horizontal-drift raw data DUNE 118

status: Approved
tags: Backwards compatibility, Data I/O layer
jama: DUNE-DUNE_STKH-118;

The framework ecosystem shall support processing ProtoDUNE II horizontal-drift raw data.

Requirement: ProtoDUNE II vertical-drift raw data DUNE 119

status: Approved
tags: Backwards compatibility, Data I/O layer
jama: DUNE-DUNE_STKH-119;

The framework ecosystem shall support processing ProtoDUNE II vertical-drift raw data.

Requirement: Write collections of unconstrained size DUNE 120

status: Approved
tags: Original, Memory management
jama: DUNE-DUNE_STKH-120;

The framework shall support the writing of collections too large to hold in memory.

B.2. Supporting Requirements 73

https://fnal-prod.jamacloud.com/perspective.req?projectId=63&docId=15242
https://fnal-prod.jamacloud.com/perspective.req?projectId=63&docId=15244
https://fnal-prod.jamacloud.com/perspective.req?projectId=63&docId=15288

Phlex, Release 0.3 (For Review)

Requirement: Record user-selected items from the shell environment DUNE 123

status: Approved
tags: Provenance
jama: DUNE-DUNE_STKH-123;

The framework shall record user-selected items from the shell environment.

Requirement: User-provided execution environment information DUNE 124

status: Approved
tags: Provenance
jama: DUNE-DUNE_STKH-124;

The framework shall record labelled execution environment information provided by the user.

Requirement: Command line interface (CLI) DUNE 125

status: Approved
tags: Configuration
jama: DUNE-DUNE_STKH-125;

The framework shall provide a command-line interface that allows the setting of configuration parameters.

• See the technical design (under preparation)

74 Appendix B. Framework Requirements

https://fnal-prod.jamacloud.com/perspective.req?projectId=63&docId=15480
https://fnal-prod.jamacloud.com/perspective.req?projectId=63&docId=15482
https://fnal-prod.jamacloud.com/perspective.req?projectId=63&docId=15710

Phlex, Release 0.3 (For Review)

Requirement: Support local configuration changes DUNE 126

status: Approved
tags: Configuration
jama: DUNE-DUNE_STKH-126;

The framework shall support the use of local configuration changes with respect to a separate complete configuration
to modify the execution of a program.

• See the technical design (under preparation)

Requirement: Configuration tracing DUNE 127

status: Approved
tags: Configuration
jama: DUNE-DUNE_STKH-127;

The framework configuration system shall have an option to provide diagnostic information for an evaluated config-
uration, including origins of final parameter values.

• See the technical design (under preparation)

Requirement: Configuration language single point of maintenance DUNE 128

status: Approved
tags: Configuration
jama: DUNE-DUNE_STKH-128;
notes: This must be met by each configuration language.

The language used for configuring a framework program shall include features for maintaining hierarchical config-
urations from a single point of maintenance.

• See the technical design (under preparation)

B.2. Supporting Requirements 75

https://fnal-prod.jamacloud.com/perspective.req?projectId=63&docId=15715
https://fnal-prod.jamacloud.com/perspective.req?projectId=63&docId=15718
https://fnal-prod.jamacloud.com/perspective.req?projectId=63&docId=15723

Phlex, Release 0.3 (For Review)

Requirement: Enable identification of data sets containing chunked data products DUNE 129

status: Approved
tags: Provenance, Chunkification
jama: DUNE-DUNE_STKH-129;
notes: This document uses "data cells" rather than "data sets".

The framework shall record metadata identifying data sets where the framework took special measures to process
data collections of unconstrained size.

Requirement: Framework build flags DUNE 131

status: Approved
tags: Debugging
jama: DUNE-DUNE_STKH-131;

The framework build system shall support options that enable debugging executed code.

Requirement: Floating-point environment DUNE 132

status: Approved
tags: Reproducibility, Error handling, Debugging
jama: DUNE-DUNE_STKH-132;

The framework shall allow the per-execution setting of the float-point environment to control the handling of IEEE
floating-point exceptions.

76 Appendix B. Framework Requirements

https://fnal-prod.jamacloud.com/perspective.req?projectId=63&docId=15737
https://fnal-prod.jamacloud.com/perspective.req?projectId=63&docId=15744
https://fnal-prod.jamacloud.com/perspective.req?projectId=63&docId=15746

Phlex, Release 0.3 (For Review)

Requirement: Graceful shutdown for uncaught exception DUNE 135

status: Approved
tags: Error handling
jama: DUNE-DUNE_STKH-135;

The framework shall by default attempt a graceful shutdown upon receiving an uncaught exception from user algo-
rithms.

Requirement: Graceful shutdown for received signal DUNE 136

status: Approved
tags: Error handling
jama: DUNE-DUNE_STKH-136;

The framework shall by default attempt a graceful shutdown when receiving a signal.

Requirement: Diagnostic message when exceeding memory limit DUNE 137

status: Approved
tags: Memory management, Error handling
jama: DUNE-DUNE_STKH-137;

The framework shall emit a diagnostic message if the program attempts to exceed the configured maximum memory.

B.2. Supporting Requirements 77

https://fnal-prod.jamacloud.com/perspective.req?projectId=63&docId=15788
https://fnal-prod.jamacloud.com/perspective.req?projectId=63&docId=15789
https://fnal-prod.jamacloud.com/perspective.req?projectId=63&docId=15802

Phlex, Release 0.3 (For Review)

Requirement: Output file rollover due to file size DUNE 138

status: Approved
tags: Data I/O layer
jama: DUNE-DUNE_STKH-138;

The framework shall have an option to rollover output files according to a configurable limit on output-file size.

Requirement: Output file rollover due to user-defined quantities DUNE 139

status: Approved
tags: Data I/O layer
jama: DUNE-DUNE_STKH-139;
notes: An example of an aggregated value of a user-derived quantity is the number of protons on target (POTs).

The framework shall have an option to rollover output files according to a configurable limit on the aggregated value
of a user-derived quantity.

Requirement: Output file rollover due to file lifetime DUNE 140

status: Approved
tags: Data I/O layer
jama: DUNE-DUNE_STKH-140;

The framework shall have an option to rollover output files according to a configurable limit on the time the file has
been open.

78 Appendix B. Framework Requirements

https://fnal-prod.jamacloud.com/perspective.req?projectId=63&docId=15826
https://fnal-prod.jamacloud.com/perspective.req?projectId=63&docId=15830
https://fnal-prod.jamacloud.com/perspective.req?projectId=63&docId=15832

Phlex, Release 0.3 (For Review)

Requirement: I/O backend for HDF5 DUNE 141

status: Approved
tags: Data I/O layer, Original
jama: DUNE-DUNE_STKH-141;

The framework ecosystem shall support an HDF5 IO backend.

• See Section 3.2.1.

Requirement: Optimize availability of external resources DUNE 143

status: Approved
tags: Resource management
jama: DUNE-DUNE_STKH-143;
notes: Examples of external resources include local GPUs, remote inference servers, and databases. This
requirement also serves as a replacement for a former requirement: "The framework MUST be able to
broker/cache service replies that might be common to multiple instances of algorithms (reduce load on external
service/disk/memory/network/...). E.g. a request for a calibration constant that is common among all FPUs in a
run. Not every instance of an algorithm should trigger an actual request to the central database providing these."

The framework shall optimize the availability of external resources.

Requirement: Efficient execution of algorithms requiring access to a network resource DUNE 144

status: Approved
tags: Concurrency and multithreading, Original, Resource management
jama: DUNE-DUNE_STKH-144;
notes: An example of efficient execution is an algorithm requiring network resource does not occupy a core that
can do other work while the algorithm "waits" for the resource to respond.

The framework shall efficiently execute a graph of algorithms where at least one algorithm requires access to a
network resource.

B.2. Supporting Requirements 79

https://fnal-prod.jamacloud.com/perspective.req?projectId=63&docId=15838
https://fnal-prod.jamacloud.com/perspective.req?projectId=63&docId=15848
https://fnal-prod.jamacloud.com/perspective.req?projectId=63&docId=15854

Phlex, Release 0.3 (For Review)

Requirement: Specification of maximum number of CPU threads DUNE 146

status: Approved
tags: Resource management
jama: DUNE-DUNE_STKH-146;

The framework shall enable the specification of the maximum number of CPU threads permitted by the program.

Requirement: Specification of maximum allowed CPU memory DUNE 147

status: Approved
tags: Resource management, Memory management
jama: DUNE-DUNE_STKH-147;

The framework shall enable the specification of the maximum CPU memory allowed by the program.

Requirement: Specification of GPU resources DUNE 148

status: Approved
tags: Resource management
jama: DUNE-DUNE_STKH-148;

The framework shall enable the specification of GPU resources required by the program.

80 Appendix B. Framework Requirements

https://fnal-prod.jamacloud.com/perspective.req?projectId=63&docId=15865
https://fnal-prod.jamacloud.com/perspective.req?projectId=63&docId=15866
https://fnal-prod.jamacloud.com/perspective.req?projectId=63&docId=15869

Phlex, Release 0.3 (For Review)

Requirement: Efficient execution of algorithms with specific CPU memory requirements DUNE 150

status: Approved
tags: Resource management, Memory management
jama: DUNE-DUNE_STKH-150;

The framework shall efficiently execute a graph of algorithms where at least one algorithm specifies a required
amount of CPU memory.

Requirement: Efficient execution of algorithms with specific GPU memory requirements DUNE 151

status: Approved
tags: Resource management, Memory management
jama: DUNE-DUNE_STKH-151;

The framework shall efficiently execute a graph of algorithms where at least one algorithm specifies a required
amount of GPU memory.

Requirement: Specification of algorithm's maximum number of CPU threads DUNE 152

status: Approved
tags: Resource management
jama: DUNE-DUNE_STKH-152;

The framework shall enable the specification of the maximum number of CPU threads permitted by the algorithm.

• See Section 3.4

B.2. Supporting Requirements 81

https://fnal-prod.jamacloud.com/perspective.req?projectId=63&docId=15874
https://fnal-prod.jamacloud.com/perspective.req?projectId=63&docId=15875
https://fnal-prod.jamacloud.com/perspective.req?projectId=63&docId=15883

Phlex, Release 0.3 (For Review)

Requirement: Specification of algorithm's GPU resources DUNE 153

status: Approved
tags: Resource management
jama: DUNE-DUNE_STKH-153;

The framework shall enable the specification of GPU resources required by the algorithm.

Requirement: Specification of algorithm's CPU memory usage DUNE 154

status: Approved
tags: Resource management, Memory management
jama: DUNE-DUNE_STKH-154;

The framework shall enable the specification of an algorithm’s expected CPU memory usage.

• See Section 3.2.1.1

82 Appendix B. Framework Requirements

https://fnal-prod.jamacloud.com/perspective.req?projectId=63&docId=15886
https://fnal-prod.jamacloud.com/perspective.req?projectId=63&docId=15889

BIBLIOGRAPHY

[Wiki-Framework] https://en.wikipedia.org/w/index.php?title=Software_framework&oldid=1285034658

[Jama-Connect] https://www.jamasoftware.com/platform/jama-connect/

[Gaudi] Charles Leggett, et al, J. Phys. Conf. Ser. 898, 042009 (2017)

[CMSSW] E. Sexton-Kennedy, et al, J. Phys. Conf. Ser. 608, 012034 (2015)

[O2] J. Adam, et al [ALICE Collaboration], “Technical Design Report for the Upgrade of the Online-Offline
Computing System”, CERN-LHCC-2015-006, ALICE-TDR-019 (2015)

[art] C. Green, et al, J. Phys. Conf. Ser. 396, 022020 (2012)

[Meld] K. Knoepfel, EPJ Web of Conferences 295, 05014 (2024)

[SPEC-0] https://scientific-python.org/specs/spec-0000/

[Wiki-Pure] https://en.wikipedia.org/wiki/Pure_function

[Wiki-HOF] https://en.wikipedia.org/wiki/Higher-order_function

[Bird] R. Bird, Introduction to Functional Programming using Haskell (2nd ed.), Prentice Hall (1988), pp.
131–132

[Cpp-Function] https://en.cppreference.com/w/cpp/language/function.html

[Cpp-UserLiteral] https://en.cppreference.com/w/cpp/language/user_literal.html

[Wiki-Partition] https://en.wikipedia.org/wiki/Partition_of_a_set

[Wiki-CBRNG] https://en.wikipedia.org/wiki/Counter-based_random_number_generator

83

https://en.wikipedia.org/w/index.php?title=Software_framework&oldid=1285034658
https://www.jamasoftware.com/platform/jama-connect/
https://scientific-python.org/specs/spec-0000/
https://en.wikipedia.org/wiki/Pure_function
https://en.wikipedia.org/wiki/Higher-order_function
https://en.cppreference.com/w/cpp/language/function.html
https://en.cppreference.com/w/cpp/language/user_literal.html
https://en.wikipedia.org/wiki/Partition_of_a_set
https://en.wikipedia.org/wiki/Counter-based_random_number_generator

Phlex, Release 0.3 (For Review)

84 Bibliography

INDEX

A
Algorithm, 6, 14, 43
APA, 43

B
Backward compatibility (persisted data), 43

C
CHOF, 43
Configured higher-order function, 43
Configured higher-order function, 24

D
Data cell, 33, 43
Data layer, 43
Data product, 4, 43
Data-layer hierarchy, 43

F
Framework ecosystem, 44

I
Index set, 11, 44
Indexed family, 11, 44

M
Metadata, 44
Module, 24, 44

P
Provenance, 4, 44

R
Reproducible, 4, 12, 44
Resource, 22, 44

85

	Introduction
	Requirements Process and Framework Selection
	Requirements Ownership
	Requirements in This Document

	Framework Philosophy
	Flexibility
	Portability
	Usability
	Reusability

	Programming Languages
	Framework Independence
	Guide to Reading This Document

	High-Level Abstractions
	Function Notation
	Types
	Boolean Set
	Representing void and NoneType
	Representing Optional Types

	Sequences and Families
	Functional Programming
	Pure Functions
	Challenges with Functional Programming

	Families of Data and Higher-Order Functions
	Data Flow
	Data Flow with Families

	Conceptual Design
	Topology of the Data-Flow Graph
	Data Organization
	Data Products
	Structure and Representation
	Defining Data Product Types

	Data Layers, Data Cells, and Families
	Data Product Management
	Data Product Identification

	Algorithms
	Input Parameters
	Return Types
	Function Names and Qualifiers

	Framework Registration
	Algorithms with Multiple Input Data Products
	Data Products from Different Data Layers
	Data Products from Adjacent Data Cells

	Accessing Configuration Information
	Framework Dependence in Registration Code
	Member Functions of Classes
	Overloaded Functions

	Supported Higher-Order Functions
	Transforms
	Operator Signature
	Registration Interface

	Observers
	Operator Signature
	Registration Interface

	Predicates
	Operator Signature
	Registration Interface

	Filtering
	Predicate Expression
	Registration interface

	Partitioned Folds
	Partitions
	Initializing the Accumulator
	Fold Operation
	Operator Signatures
	Registration Interface

	Partitioned Unfolds
	Next Type
	Operator Signatures
	Registration Interface

	Windows
	Operator Signatures
	Registration Interface

	Framework Driver
	Data-Product Providers
	Data-Product Writers
	Resources
	Limited Resources
	GPUs
	Random Number Resource
	User-defined Resources

	Program Configuration

	Definitions
	Framework Requirements
	Conceptual Requirements
	Supporting Requirements

	Bibliography
	Index

